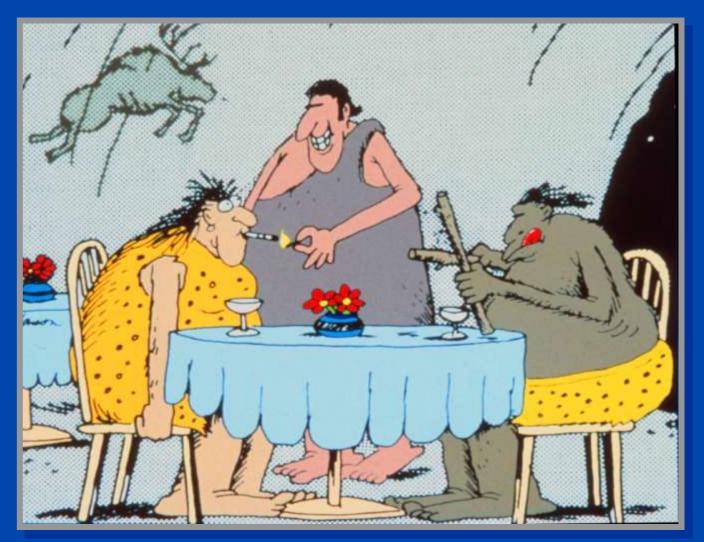


Update on TAVR Results 2014

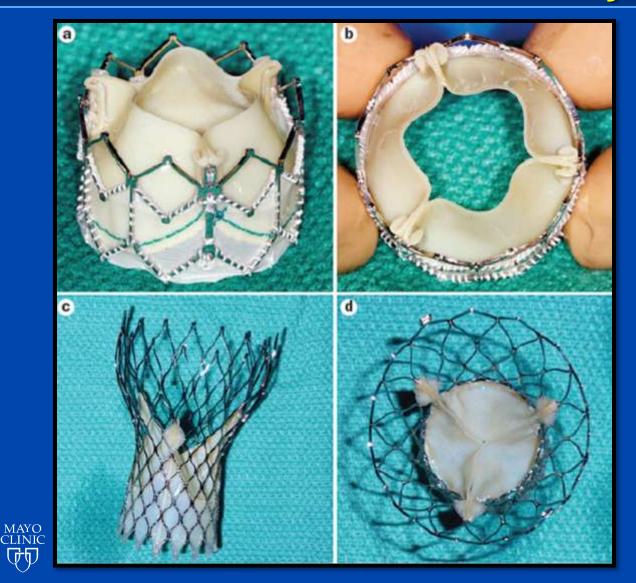
David R. Holmes, Jr., M.D. Mayo Clinic, Rochester TCTAP 2014 Seoul, Korea April 2014

Presenter Disclosure Information


David R. Holmes, Jr., M.D. "Update on TAVR Results 2014"

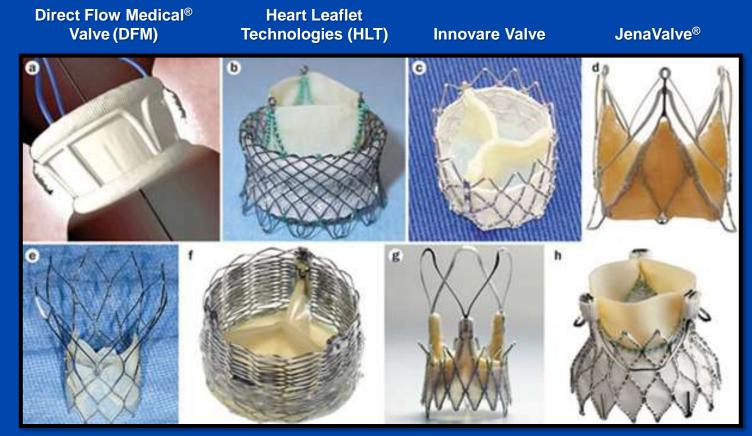
The following relationships exist related to this presentation:

None



As Thak worked frantically to start a fire, a Cro-Magnon man, walking erect, approached the table and simply gave Theena a light.

TAVI Valves Currently Used



A & B: Edwards SAPIEN XT[®]

C & D: 3rd Generation of the CoreValve[®]

> Rodes-Cabau: Nat Rev Cardiol 9:15-29, 2012

2nd Generation TAVI Devices

Portico[®] Valve

Sadra[®] Lotus Medical Valve

Symetis[®] Accurate Valve

Engager[®] Valve

Rodes-Cabau: Nat Rev Cardiol 9:15-29, 2012

Background

 Transcatheter Aortic Valve Replacement (TAVR) is used with increasing frequency in patients with severe aortic stenosis (AS) who are at either high risk or extreme risk (inoperable) for conventional surgical aortic valve replacement (SAVR)

Clinical Questions

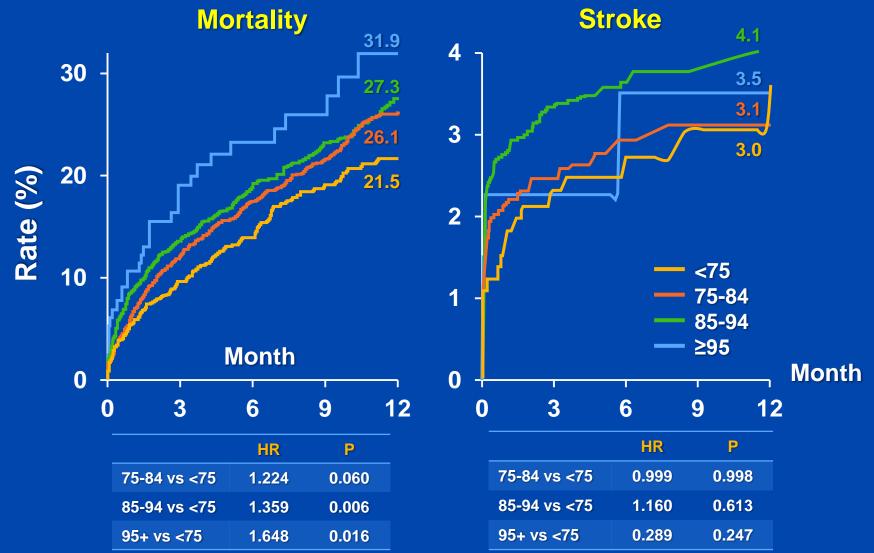
- 1) What is the incidence of adverse clinical events of mortality, stroke and rehospitalization at 1 year post TAVR in the U.S.?
- 2) What is the average time alive and out of the hospital to 6 months?
- 3) Are there any striking associations between patient characteristics and clinical outcomes at 1 year post TAVR?

Patient Population

- 5,980 Patients enrolled in the STS/ACC TVT registry November 2011 – July 2013
- Age > 65 years
- Medicare insurance
- Part A & B and non-HMO during month of index procedure
- Index admission linked to inpatient Medicare claims using direct patient identifiers (97% successful record linkage rate)

Patient Characteristics

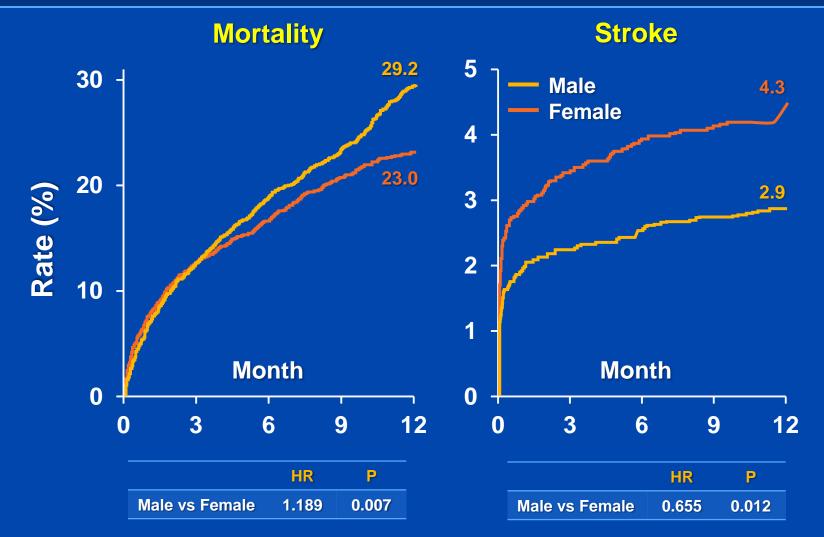
Characteristic	Study Cohort N= 5,980
Age (yr) Median (25 th , 75 th)	85 <mark>(79, 88)</mark>
75-84, n (%)	2,244 <mark>(37.5)</mark>
85-94, n (%)	2,869 <mark>(48.0)</mark>
Female, n (%)	3,006 <mark>(50.4)</mark>
STS PROM Score (25 th , 75 th)	7.1 (4.7, 10.9)
<8% n, (%)	3,405 <mark>(57.0)</mark>
8-15%	1,844 <mark>(30.8)</mark>
>15%	729 <mark>(12.2)</mark>
NYHA Class III/IV Heart Failure, n (%)	4,876 <mark>(83.6)</mark>
CAD, n (%)	3,564 <mark>(61.7)</mark>


One Year Outcome

Mortality	26.2% (24.7%, 27.8%)	
Stroke	3.6% (3.1%, 4.2%)	
Death or stroke	28.4% (26.9%, 30.0%)	
Incidence & frequency of repeat hospitalization within 6 months	4.6 10.7 26.0%	%
	0	■1 ■2 ■3 ■4 ■5

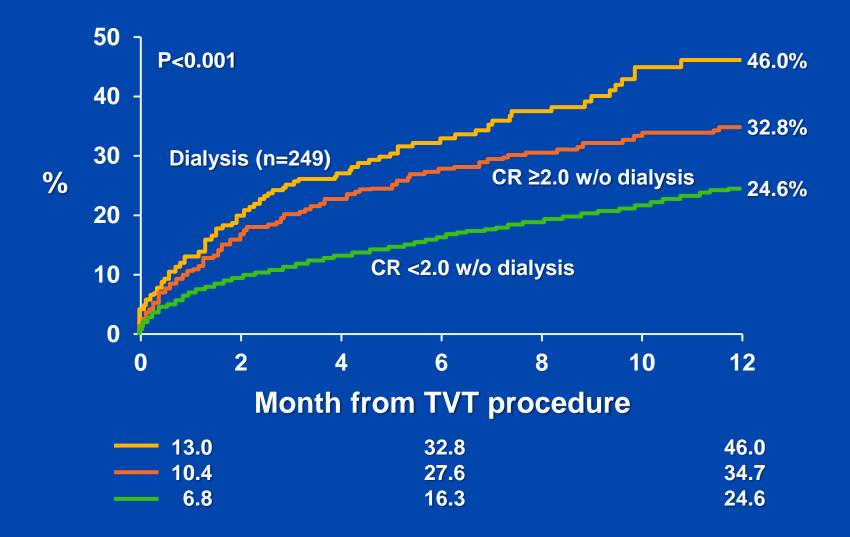
of Rehospitalizations

Cumulative Incidence of Death and Stroke Affect of Age

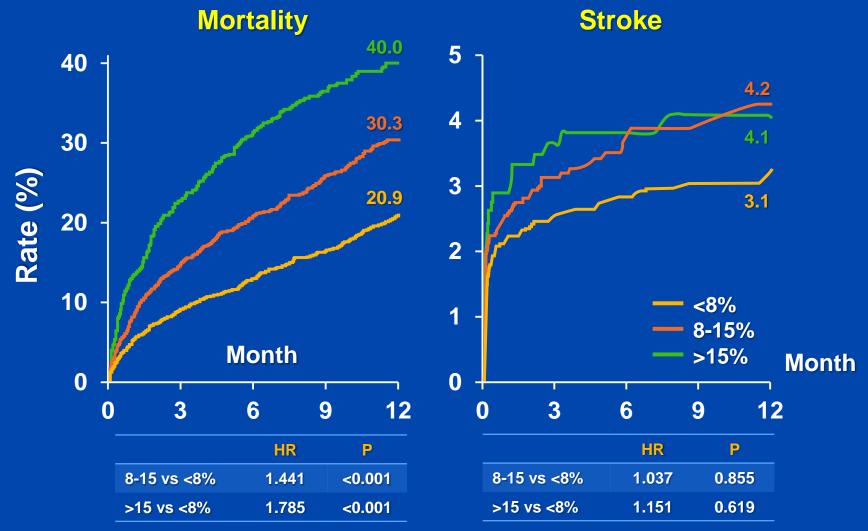


MAYO CLINIC

ታር


©2014 MFMER | 3336015-11

Cumulative Incidence of Death and Stroke Affect of Sex



Mortality

Cumulative Incidence of Death and Stroke Affect of STS Prom

Multivariable Model of 1-Year Mortality after TAVR

		HR	LCL	UCL	<u> </u>
Age: <75 vs 75-84		1.22	0.99	1.51	0.06
<75 vs 85-94	H	1.36	1.09	1.69	<0.01
<75 vs 95+	⊢−− −−−1	1.65	1.10	2.48	0.02
Sex: female vs male	HEH	1.19	1.05	1.35	<0.01
COPD: None/mild vs moderate	-0-1	1.16	0.98	1.37	0.09
None/mild vs severe	HOH	1.41	1.19	1.67	<0.01
Renal function: $Cr \ge 2$ w/o dialysis vs $Cr < 2$ w/o dialy	sis 🗖	1.35	1.09	1.66	<0.01
Dialysis vs Cr<2 w/o dialysis		1.81	1.42	2.30	<0.01
LVEF: <30 vs 30-45	HOH	1.03	0.89	1.20	0.67
<30 vs >45	┝╼┙	1.17	0.95	1.45	0.13
Access site: transfemoral vs other	HEH	1.42	1.26	1.61	<0.01
STS PROM: 8-15% vs <8%	HEH	1.44	1.25	1.67	<0.01
>15% vs <8%	H H	1.78	1.46	2.17	<0.01
0.5	1 1.5 2 3	4			

Multivariable Model of 1-Year Stroke after TAVR

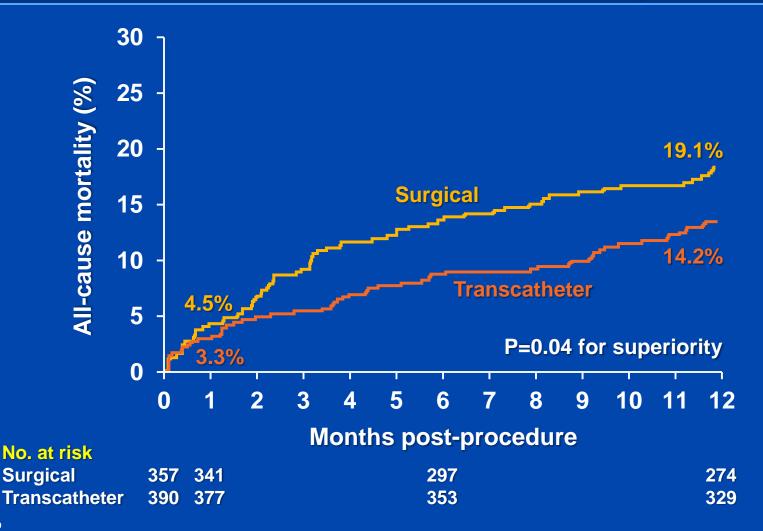
		HR	LCL	UCL	P
Age: <75 vs 75-84	⊢−□ −−1	1.00	0.57	1.75	1.00
<75 vs 85-94	┝━━┓	1.16	0.65	2.06	0.61
<75 vs 95+		0.29	0.04	2.36	0.25
Sex: female vs male	H-0-4	0.65	0.47	0.91	0.01
COPD: None/mild vs moderate	⊢−□−−1	0.79	0.48	1.31	0.36
None/mild vs severe	⊢−□ −−1	0.94	0.56	1.58	0.81
Renal function: Cr ≥2 w/o dialysis vs Cr<2 w/o d	ialysis <mark>⊢⊢⊐</mark> —⊣	1.24	0.68	2.28	0.48
Dialysis vs Cr<2 w/o dialysis		1.24	0.58	2.69	0.58
LVEF: <30 vs 30-45	⊢−−□ −−−1	1.00	0.50	2.00	1.00
<30 vs >45	⊢−□ −−1	0.98	0.53	1.80	0.94
Access site: transfemoral vs other	⊢⊒⊣	1.17	0.84	1.64	0.35
STS PROM: 8-15% vs <8%	⊢− □−−1	1.04	0.70	1.53	0.85
15% vs <8%	⊢	1.15	0.66	2.00	0.62
	0.5 1 1.5 2 3 4]			

Conclusions (2)

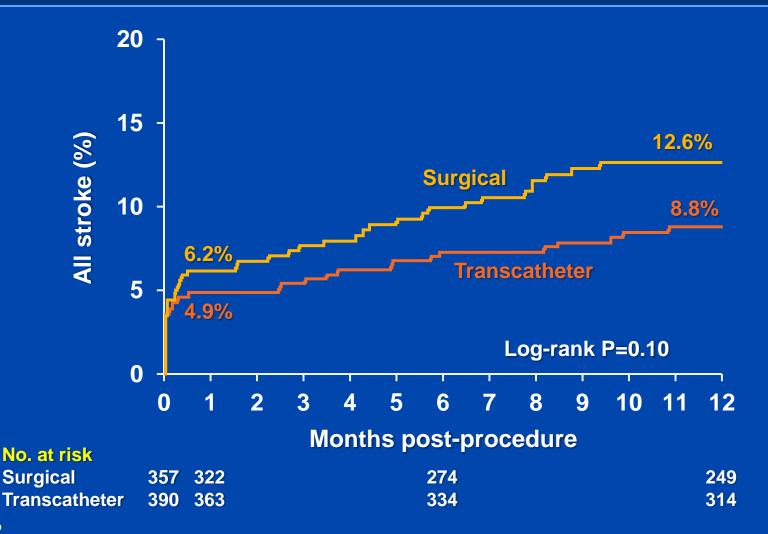
 Different baseline demographics are significantly associated with 1 year mortality as compared with stroke

Mortality	Stroke
Age	Female gender
Male gender	
Severe COPD	
ESRD	
Access site	
STS PROM	

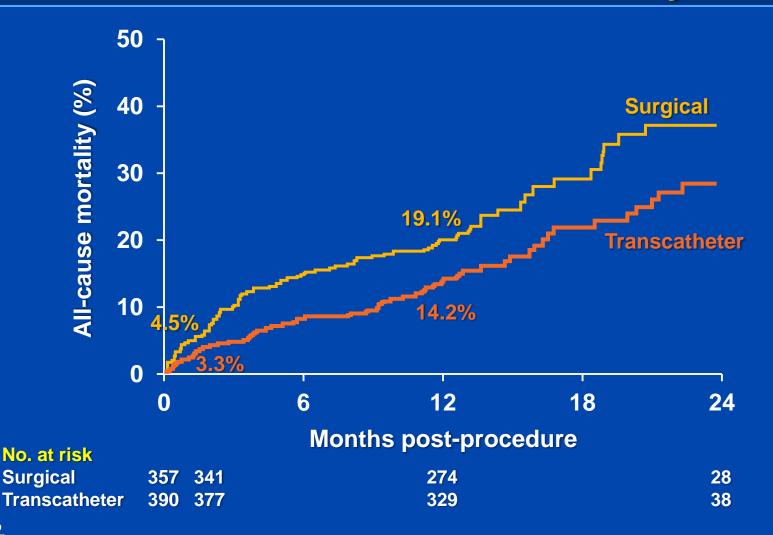
 Identification of these associations is essential for developing risk prediction models and will aid in patient selection criteria for TAVR


Extreme Risk Trial

TAVR with the self-expanding CoreValve prosthesis reduced the composite endpoint of death from any cause or major stroke at 1 year compared to a performance goal in symptomatic patients with severe aortic stenosis at extreme surgical risk



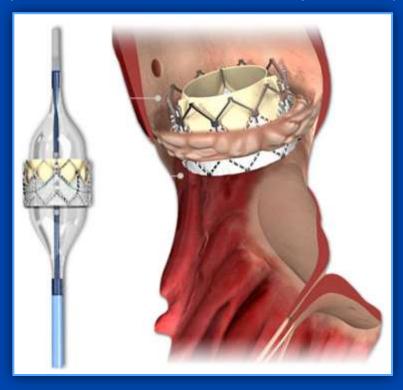
Primary Endpoint 1 Year All-Cause Mortality



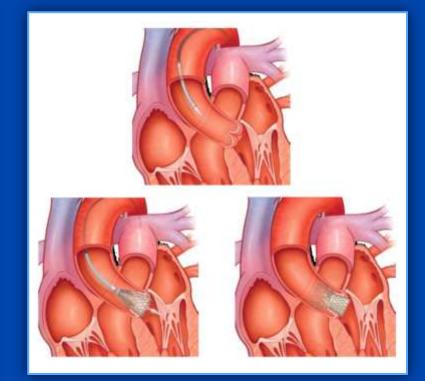
All Stroke

2-Year All-Cause Mortality

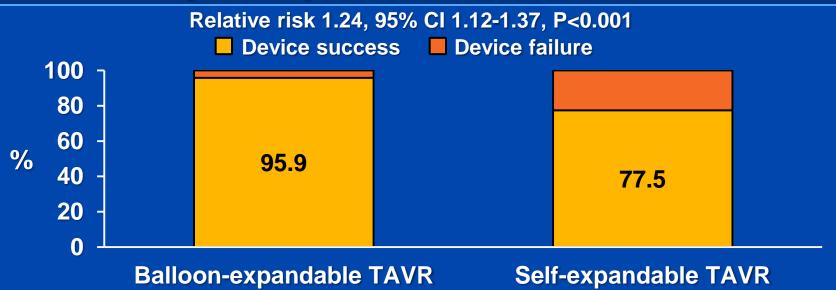
Conclusion


- We assessed the safety and effectiveness of TAVR with the CoreValve prosthesis compared to surgical valve replacement in symptomatic patients with severe aortic stenosis at increased surgical risk
- The rate of death from any cause at 1 year was significantly reduced with TAVR performed with the CoreValve prosthesis

Background


Balloon-expandable THV Edwards Sapien XT

(Cobalt chromium stent frame, bovine pericardium)


Self-expandable THV Medtronic CoreValue

(Nitinol stent frame, porcine pericardium)

Primary Endpoint – Device Success

Causes of device failure	Balloon-expandable (n=121)	Self-expandable (n=120)
Unsuccessful vascular access, delivery and deployment	0/121 (0)	0/120 (0)
Incorrect position with implantation of >1 valve	1/121 (0.8)	7/120 (5.8)
Inadequate performance of the prosthetic heart valve		
Aortic valve area <1.2 cm ² or mean aortic valve gradient >20 mm Hg	0/121 (0)	0/120 (0)
Moderate or severe prosthetic valve regurgitation	5/121 (4.1)	22/120 (18.3)
Total (hierarchical)	5/121 (4.1)	27/120 (22.5)

Clinical Outcome at 30 Days

	Balloon-expandable (n=121)	Self-expandable (n=117)	Р
Acute kidney injury	5/121 (4.1)	11/117 (9.4)	0.13
Repeat proc, for valve-related dysfunction	1/121 (0.8)	2/117 (1.7)	0.62
Combined safety endpoint	22/121 (18.2)	27/117 (23.1)	0.42
MACCE	8/121 (6.6)	4/117 (3.4)	0.38
Rehospitalization for HF	0/119 (0.0)	5/117 (4.3)	0.02
NYHA class improvement	100/106 (94.3)	91/105 (86.7)	0.06
Quality of life score	71.0±14.9	65.9±18.2	0.02
New permanent pacemaker	19/110 (17.3)	38/101 (37.6)	0.001

There are no facts, only interpretations.

-Friedrich Nietzsche

Conclusions

- Among patients with high-risk aortic stenosis undergoing transfemoral TAVR, the use of a balloonexpandable valve resulted in a greater rate of device success than use of a self-expandable value
- At 30-days, improvement of heart failure symptoms was more frequently observed with the balloonexpandable valve, while minor stroke rates were numerically higher
- Long-term follow-up of the CHOICE population should be awaited, to determine whether the observed differences will translate into a clinically relevant overall benefit for the balloon-expandable valve

Interpretations

- TAVR is used with increasing frequency in high risk and increasingly less high risk patients
- Hemodynamic improvement is excellent and sustained out to 5 years
- Clinical results are improving
 - Baseline co-morbid conditions are associated with adverse outcome
- A variety of devices are available and technology continues to iterate
- Risk prediction scores are being developed
- Goal:

TVT Registry Update

David R. Holmes, Jr., M.D. Mayo Clinic, Rochester Thursday AM Conference April 2014

DISCLOSURE Conference Director / Planning Committee

No Relevant Financial Relationship (s)

John Bresnahan, MD Gurpreet Sandhu, MD Jen Mears

©2012 MFMER | slide-30

DISCLOSURE David R. Holmes, Jr., M.D.

<u>Relevant Financial Relationship(s)</u> None

NUTIC

Off Label Usage

None

©2012 MFMER | slide-31

Learning Objectives

- What factor is associated with increased stroke at 1 year in patients undergoing TAVR?
- What is the relationship between increasing degrees of renal insufficiency and 1 year outcome of TAVR?
- What is the average number of days out of hospital at 6 months following TAVR in the TVT Registry?

Valve in Valve Transcatheter Aortic Replacement for Degenerative Aortic Bioprosthesis: Initial Results from the STS/ACC TVT Registry

E. Murat Tuzcu, J. Matthew Brennan, Ralph Brindis, John Carroll, Fred Edwards, Frederick Grover, David Shahian, Eric Peterson, John Rumsfeld, David Holmes, Michael Mack For TVT Registry

©2014 MFMER | 3337518-33

Conflict of Interest Disclosure

- No financial conflicts
- Member of Executive Committee of PARTNER Trial
- Principal investigator of SALUS Trial

Background

- Bioprosthetic valves are used in >80% of AVR surgeries in US
- Durability of bioprosthesis is limited
- Valve-in-valve TAVR (ViV) is used in patients with failed surgical bioprosthesis who are at high risk for re-do AVR
- Data about ViV TAVR procedure is limited
- TVT registry includes data of most of the TAVR procedures in US (both for native valves and ViV procedures)

Aim

To assess the in-hospital and one year outcomes of ViV TAVR in the TVT Registry

©2014 MFMER | 3337518-36

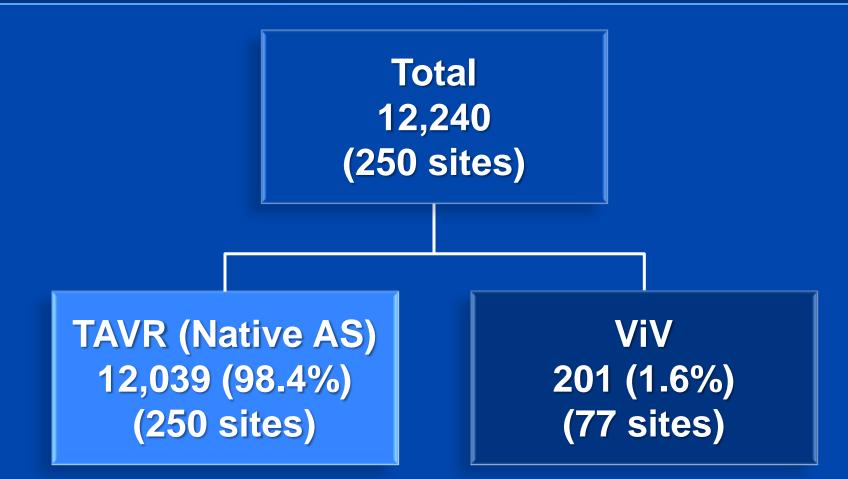
Study Population

Procedural and in-hospital outcomes (250 sites)

 All patients undergoing TAVR entered into the TVT Registry November 2011-November 2013 from 250 sites

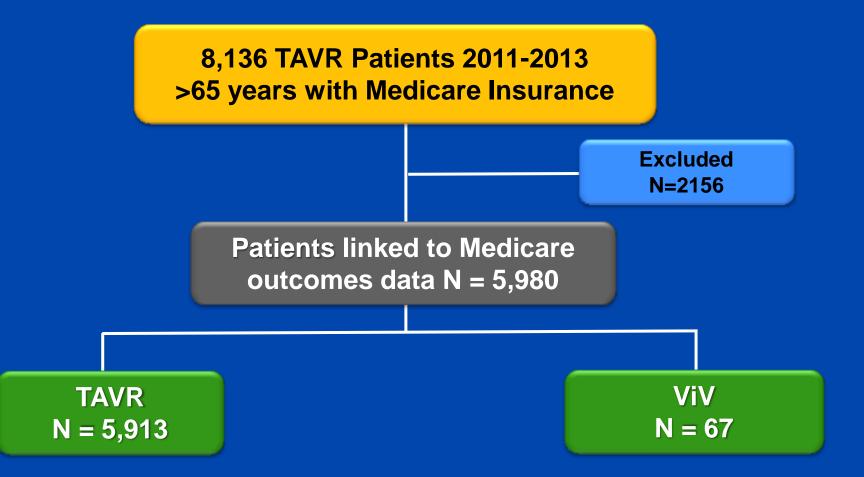
One-year outcomes (228 sites)

- All patients undergoing TAVR November 2011-July 31, 2013
- Age >65 years
- Medicare insurance
- Part A & B and non-HMO during month of index procedure
- Index admission linked to inpatient Medicare claims using direct patient identifiers (~97% successful record linkage rate)


Methods

Safety and efficacy of ViV TAVR procedures using Edwards Sapien balloon expandable valve

- Comparison to TAVR for native valve AS
 - In-hospital
 - Procedural outcomes
 - Mortality
 - Stroke
 - One year
 - Mortality
 - Stroke
 - Days alive outside hospital



In-hospital Study Population

One Year Study Population

Patient Characteristics (1)

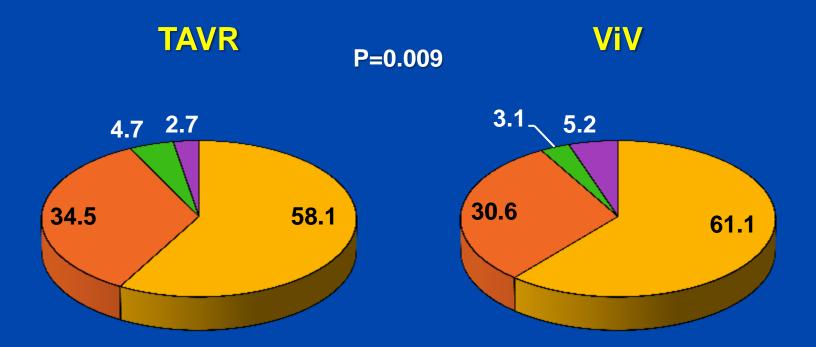
	TAVR	ViV	
Characteristic	(n=12,039)	(n=201)	P
Age (yr)	84 (78-88)	77 (66-83)	<0.0001
Male sex (%)	48.9	60.5	0.001
STS Score	6.9 (4.6-10.6)	8.0 (4.7-11.0)	0.2
NYHA FC III, IV	83.0	91.8	<0.0001
Previous MI (%)	25.6	22.0	0.3
Prior CABG (%)	32.2	47.0	<0.0001
Prior PCI (%)	35.8	18.4	<0.0001

Patient Characteristics (2)

Characteristic	TAVR (n=12,039)	ViV (n=201)	Р
Peripheral vascular disease (%)	32.2	22.4	0.003
COPD Any Oxygen dependent	45.2 14.3	42.9 11.1	0.5 0.2
On dialysis	4.2	8.0	0.01
Atrial fibrillation (%)	40.3	43.8	0.3
Permanent pacemaker (%)	16.9	22.4	0.04
Diabetes (%)	36.6	28.9	0.2
Hypertension (%)	88.8	85.1	0.09
Prior stroke	12.6	10.0	0.3
Porcelain aorta (%)	7.2	7.5	0.9
Hostile chest (%)	8.9	18.9	<0.0001

Previous Valve Surgery

	TAVR	ViV	
Events	(n=12,039)	(n=201)	P
Previous cardiac surgery			
2	3.9	20.9	<0.0001
≥3	0.56	6.47	<0.0001
Mitral valve repair (%)	1.0	9.0	<0.0001
MVR (%)	1.6	8.0	<0.0001
Mechanical	1.0	1.5	
Bioprosthesis	0.6	6.5	



Baseline Echocardiography

	TAVR	ViV	
Echo findings	(n=12,039)	(n=201)	P
AVA (cm ²⁾	0.64 (0.50-0.80)	0.71 (0.60-0.90)	<0.0001
AVG mean (mm Hg)	43.0 (36-53)	42 (29-54)	0.01
Mean LVEF (%)	57 (45-63)	55 (40-60)	0.0005
LVEF <30% (%)	7	13.7	0.0004
RVSP (mm Hg)	45 (36-56)	50 (39-64)	0.001
Moderate or severe MR (%)	36	47.4	0.0015
Moderate or severe TR (%)	32	47.6	<0.0001

Access

■ Transfemoral ■ Transapical ■ Transaortic ■ Other

©2014 MFMER | 3337518-45

Procedure

	TAVR	ViV	
Events	(n=12,039)	(n=201)	P
Fluoroscopy time (min)	17.3 (12.0-24.7)	19.7 (12.8-30.0)	0.009
Contrast volume (mL)	110 (73-170)	75 (35-128)	<0.0001
General anesthesia	98.1	98.0	0.9

Procedural Complications (1)

	TAVR	ViV	
Events	(n=12,039)	(n=201)	P
Aborted procedure (%)	3.3	1.0	0.0743
Conversion to OHS (%)	1.3	1.4	0.8457
CP bypass (%)	4.2	3.5	0.6319
Use of 2 nd valve (%)	2.4	1.0	0.2

Procedural Complications (2)

	TAVR	ViV	
Echo findings	(n=12,039)	(n=201)	P
Coronary obstruction (%)	0.5	1.0	0.3
Device embolization (%)	0.7	0	0.4
Perforation (%)	1.1	0	0.1
Aortic dissection (%)	0.4	0	0.4
Device success (%)	92.2	88.4	0.0548

Post-Procedure Echocardiography

	TAVR	ViV	
Echo findings	(n=12,039)	(n=201)	P
AVA (cm ²)	1.6 (1.3-2.0)	1.3 (1.0-1.5)	<0.0001
AVG mean (mm Hg)	10 (7-13)	18.5 (12-26)	<0.0001
Moderate or severe PV-AR (%)	9.5	2.8	0.05
Moderate or severe MR (%)	13.1	20.4	0.6072

In-Hospital Events

Evente		ViV	P
Events	(n=12,039)	(n=201)	P
VARC major bleeding (%)	3.3	3.6	0.8
Vasc comp requiring Rx	5.7	5.0	0.7
AFib (%)	6.9	3.5	0.06
New pacemaker (%)	6.8	3.5	0.06
ICU stay (hrs)	46 (25-78.5)	48 (25.3-74.7)	0.6
LOS (days)	6 (4-10)	8 (5-16)	<0.0001
Discharge to home (%)	58.2	71.1	0.0003

In-Hospital Death and Stroke

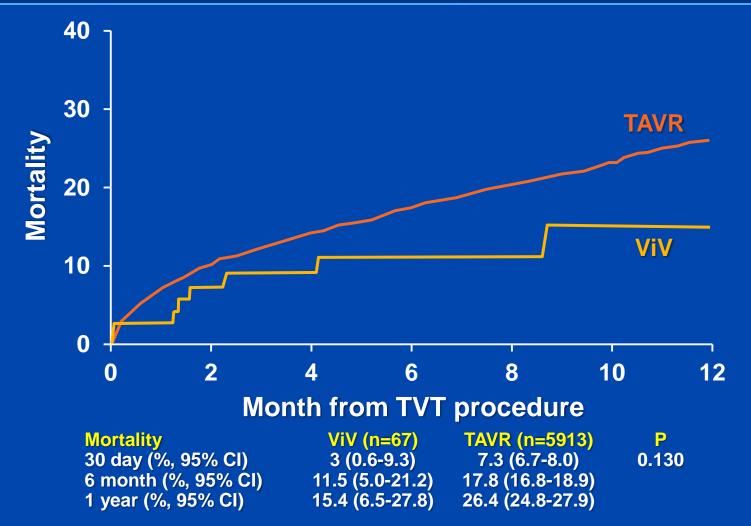
	TAVR	ViV	_
Events	(n=12,039)	(n=201)	<u> </u>
Death (all cause) (%)	5.4	4.0	0.4048
Stroke (%)	2.1	2.5	0.6661

Access and Outcome of ViV-TAVR

Events	Femoral (n=123)	Non-femoral (n=78)	Р
STS (%)	7.8 (4.6,10.4)	8.8 (5.0,12.6)	0.1
Death (%)	2.5	6.6	0.2
Stroke (%)	3.3	1.3	0.4

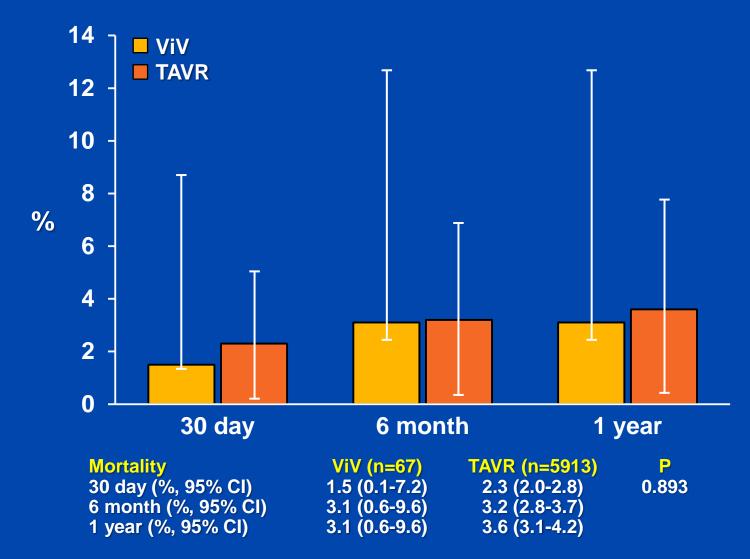
In-Hospital Outcome – Mode of Prosthesis Failure

Events	AS (n=118)	AR (n=35)	AS+AR (n=32)	Р
STS (%)	7.9 (4.7,10.9)	6.5 (4.7,10.4)	8.8 (4.9,10.8)	0.9
Death (%)	4.2	2.9	6.3	0.8
Stroke (%)	3.4	0.0	3.1	0.6
AVG _m (mm Hg)	19.5 (13,27)	14.5 (10,20)	24 (15,30)	0.009

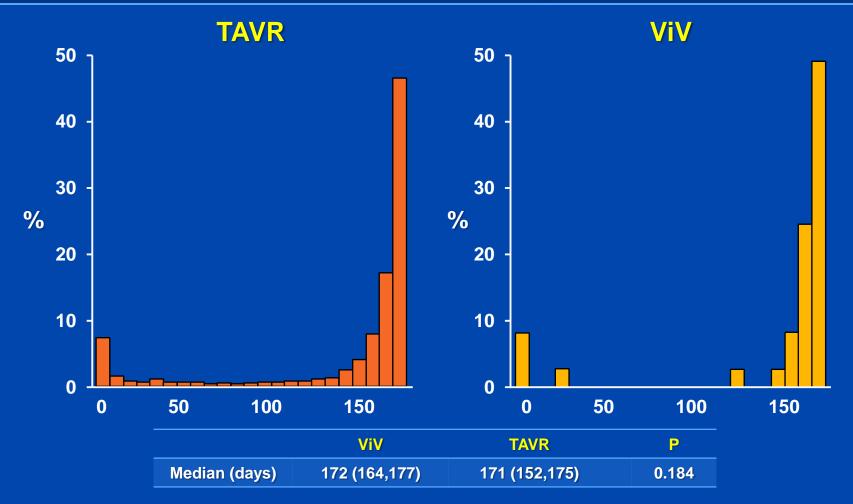


In-Hospital Outcome – Size of the ViV Device

	23 mm valve	26 mm valve	
Events	(n=134)	(n=58)	P
Death (%)	5.3	1.8	0.3
Stroke (%)	3.0	1.7	0.6
AVG _m (mm Hg)	21 (14.5,27.5)	14 (10,20)	0.0002



Mortality



Stroke

Number of Days Alive and Out of the Hospital

Limitations

- Data about the failed bioprosthesis type and size are unavailable
- Not all patients could be linked to CMS data
- 30 days and 1 year follow-up is not complete
- Quality of life analysis is not finalized

Conclusion

- Valve in valve procedure with the approved Sapien valve is safe and feasible
 - Mortality : 4.0%
 - Stroke: 2.5%
- Device success is achieved in a high percentage of cases
- Valve in valve TAVR results in hemodynamic improvement although aortic valve area is less than seen after TAVR for native valves
- One year outcomes although limited suggest continued safety and efficacy

Ongoing Analysis

- Investigation of the hemodynamic and clinical outcomes in relation to
 - Bioprosthesis type and size
 - Patient characteristics
- Additional data on functional improvement and long term outcomes are being collected

Conclusion (1)

- Of all TAVR procedures 1.6% is performed for the treatment of failed surgically placed prosthesis
- ViV patients have a similar device success and procedural complication rates as other TAVR patients
- In-hospital adverse events are similar in ViV and other TAVR patients; but after ViV hospital stay in longer
- In-hospital mortality and stroke in ViV patients are 4.0% and 2.5% respectively, similar to other TAVR patients
- Post-procedure valve gradient is higher and effective orifice area smaller in ViV patients than other TAVR pts
- Moderate or severe paravalvular aortic regurgitation is significantly less common after ViV TAVR

Conclusion (1) – Dave Shahian Edits

- 1.6% of TAVR procedures performed to treat failed surgically placed prosthesis
- Compared with other TAVR patients, ViV patients
 - Similar device success and procedural complication rates
 - Similar in-hospital adverse events
 - Longer LOS
 - Similar in-hospital mortality (4%) and stroke (2.5%)
 - Higher post-procedure valve gradient
 - Smaller EOA smaller
 - Less commonly have moderate or severe paravalvular aortic regurgitation
 - Discharged home more frequently
 - Similar number of days alive and out of the hospital

Conclusion (2)

- ViV patients are discharged home more frequently than other TAVR patients
- Patients undergoing TAVR by a non-TF approach have comparable outcomes after ViV TAVR
- Patients who received a 23 mm valve have similar in hospital death and stroke rates, but their valve gradient is higher
- One-year mortality and stroke rates of ViV patients are similar to those who underwent TAVR for native valve stenosis
- Patents in the ViV and other TAVR groups have similar number of days alive and out of the hospital
- Transcatheter valve replacement inside a previously placed surgical bioprosthesis appears to be safe and feasible
- Further study of larger patient populations is needed for long term outcome and functional improvement

Conclusion (2) – Dave Shahian Edits

- Non-TF TAVR and non-TF ViV have comparable outcomes
- 23 mm and 26 mm ViV recipients have similar in hospital death and stroke rates, but 23 mm valve gradient higher
- One-year mortality and stroke rates of ViV patients comparable to those for native valve stenosis TAVR
- Transcatheter valve replacement inside previously placed surgical bioprosthesis appears safe and feasible
- Further study of larger patient populations needed for long-term outcomes and functional improvement

MAYO CLINIC

Outcomes of Transcatheter Aortic Valve Replacement in Patients with End-Stage Renal Disease A Report from the STS/ACC TVT Registry

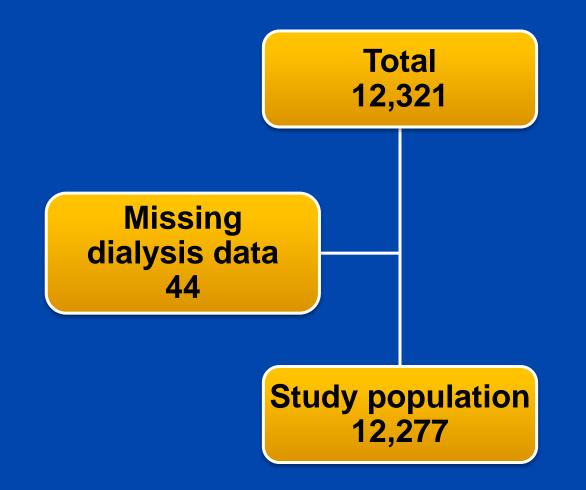
Michael Mack, J. Matthew Brennan, Sarah Milford-Beland, Dadi Dai, Ralph Brindis, John Carroll, Fred Edwards, Fred Grover, Sean O'Brien, Eric Peterson, John Rumsfeld, Dave Shahian, Vinod Thourani, E. Murat Tuczu, Alan Zajarias, David Homes For the TVT Registry

Conflict of Interest Disclosure

 Executive committee member of the PARTNER Trial of Edwards Lifesciences

Background

- Aortic stenosis (AS) is the most common valvular lesion in patients with end-stage renal disease (ESRD)
- 30-day mortality in dialysis patients with AS undergoing surgical aortic valve replacement (SAVR) ranges from 13.8*-17.3%[†]
- 1-year mortality after SAVR in elderly dialysis patients is 34-53%**
- Outcomes of transcatheter aortic valve replacement (TAVR) in patients on dialysis are not known since they were excluded from the pivotal trials
- Assessed early and 1-year outcomes of TAVR in dialysis patients captured in the TVT registry



Study Population

- Procedural and in-hospital outcomes (250 sites)
 - All pt undergoing TAVR entered into the TVT registry November 2011-November 2013 from 250 sites
- 1-year outcomes (228 sites)
 - All pt undergoing TAVR November 2011-July 31, 2013
 - Age >65 years
 - Medicare insurance
 - Part A & B and non-HMO during month of index procedure
 - Index admission linked to in-patient Medicare claims using direct pt identifiers (~97% successful record linkage rate)

TAVR in TVT Registry November 2011-2013

Patient Characteristics

	No dialysis n=11,749	Dialysis n=528	Р
Age	84	77	<0.0001
Median (IQR)	(78, 88)	(69, 84)	
Male gender (%)	48.5	58.3	<0.0001
Black/African American race (%)	3.3	11.4	<0.0001
STS PROM (%)	6.76	14.43	<0.0001
Median (IQR)	(4.51, 10.23)	(9.50, 20.07)	

Patient Characteristics

	No dialysis n=11,749	Dialysis n=528	P
Hypertension (%)	88.6	92.8	0.0028
Diabetes (%)	35.7	54.4	<0.0001
PAD (%)	31.5	40.3	<0.0001
Prior MI	25.2	30.5	0.0063
NYHA class III-IV	80.7	87.5	<0.0001

No differences in Prior PCI/CABG Prior stroke COPD Atrial fibrillation

Baseline Studies

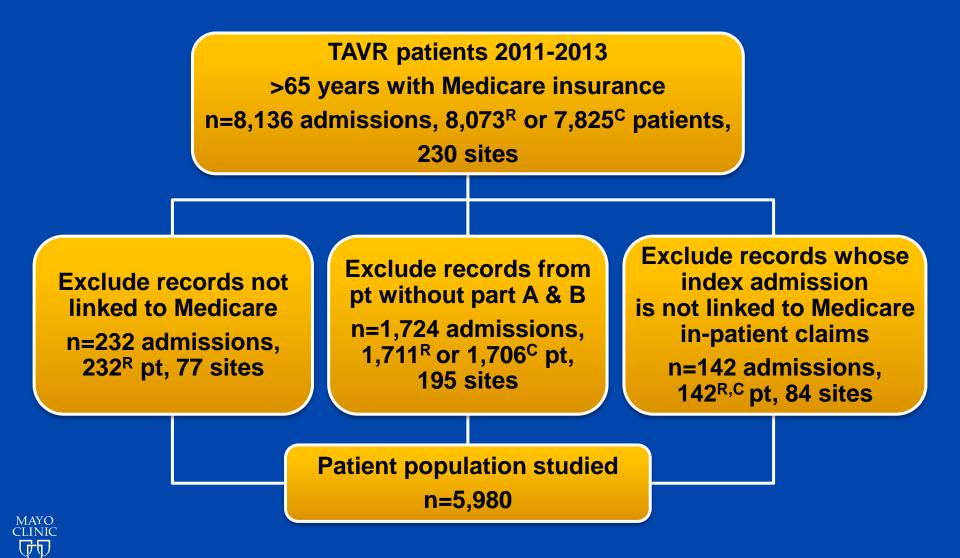
	No dialysis n=11,749	Dialysis n=528	P
Hemoglobin (g/dL)	11.7 (10.5, 12.9)	10.5 (965, 11.5)	<0.0001
Serum albumin (g/dL)	3.7 (3.3, 4.0)	3.4 (3.0, 3.8)	<0.0001
FEV 1 (% predicted)	71 (55, 88)	61 (48, 76)	<0.0001
% LVEF <45%	21	30.5	<0.0001
Mod-severe MR (%)	35.8	42.1	0.0059
Mod-severe TR (%)	31.6	41.6	<0.0001

Procedural Approach and Outcomes

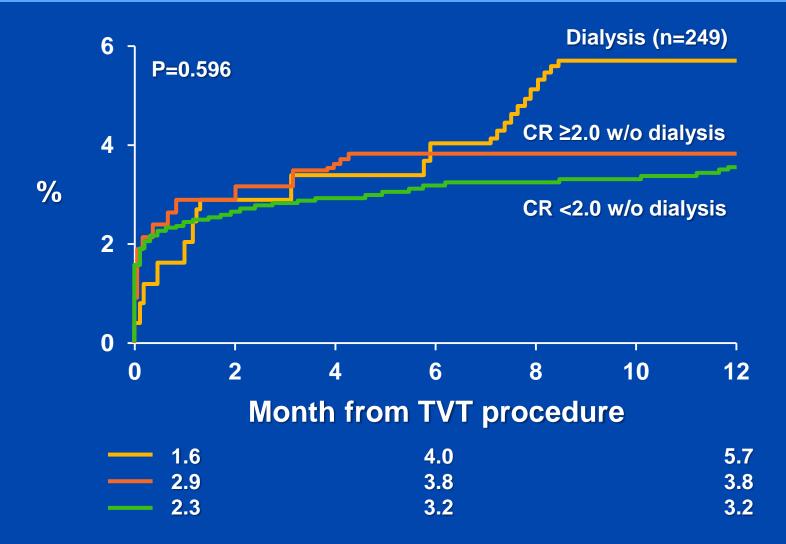
	No dialysis n=11,749	Dialysis n=528	Р
Transfemoral (TF) approach (%)	57.2	55.9	0.793
Device success (%)	89.3	86.6	0.157
Second valve (%)	4.3	6.4	0.01
Access complications	5.6	7.8	0.02

Transfemoral vs Other Access

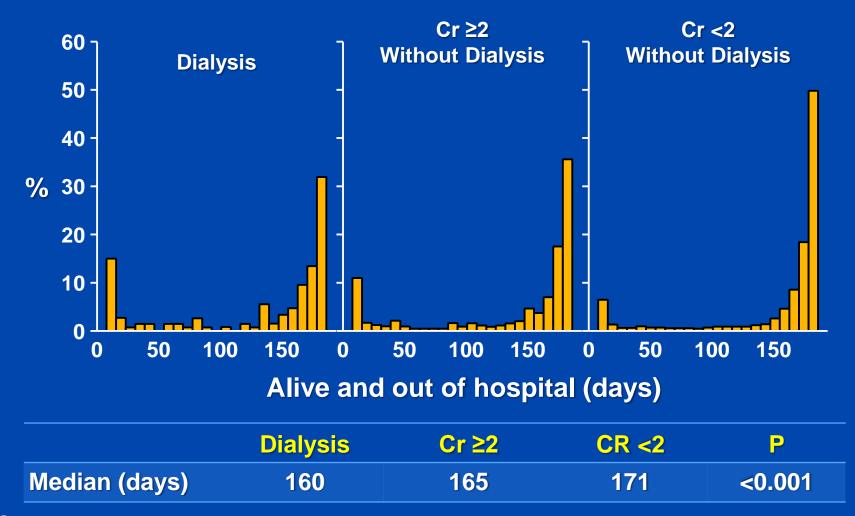
	TF n=295	Other access n=218	Р
Female (%)	37.6	46.8	0.03
Prior CABG (%)	74.6	63.8	0.008
EuroSCORE II (%)	6.5 (4, 11)	8.9 (5, 11)	0.002
STS PROM (%)	12.9 (9, 18)	17.2 (11, 23)	<0.0001
O:E ratio	7.5/14.9 (0.50)	11/18.4 (0.59)	
Stroke (%)	2	0.5	0.13
VARC major bleed (%)	8.3	3.8	0.045
LOS (IQR) (days)	6 (4, 12)	9 (7, 15)	<0.0001


O:E calculated from STS PROM mean

Mortality vs Predicted Risk


	STS <8 n=89	STS 8-15% n=190	STS >15 n=248	P
STS PROM (%)	6.3 (4.8, 7.2)	11.3 (9.6, 13)	20.5 (17.6, 26.8)	<0.0001
In-hospital mortality (%)	5.6	7.4	11.3	0.19

1 Year Study Population



Stroke

Days Alive and Out of Hospital Renal Function

Summary

- Dialysis patients undergoing TAVR are younger, more commonly male and African American with significantly higher STS PROM
- Dialysis patients have a higher incidence of hypertension, PAD, CHF and diabetes
- In-hospital mortality and stroke in dialysis patients are 8.9% and 1.3% respectively
- In-hospital outcomes are worse in ESRD patients but are related to the higher comorbidities as reflected by the STS PROM

Summary (cont)

- Patients undergoing TAVR by a non-TF approach are at significantly higher risk but have comparable outcomes
- Almost half the patients with ESRD are very high risk (STS >15) and have in-hospital mortality of 11%
- ESRD is an independent predictor of mortality at 1 year
- 1-year mortality is 46% in dialysis patients compared with 24% in patients with Cr <2.0

Conclusions

- The TVT registry has comprehensive data on the early clinical outcomes of a subgroup of patients not studied in randomized clinical trials
- Linkage with CMS administrative claims data enabled assessment of outcomes at 1 year post- procedure
- Outcomes at 30 days and 1 year in patients with ESRD are significantly worse than in patients without renal disease
- TAVR outcomes are comparable to but not any better than historical outcomes of surgical AVR
- Functional, quality of life and longer term outcomes assessment is necessary
- Based on this data, the heart team should closely evaluate the candidacy of dialysis patients for TAVR especially those with significant comorbidities and STS PROM >15%

One Year Outcomes from the STS/ACC Transcatheter Valve Therapy (TVT) Registry

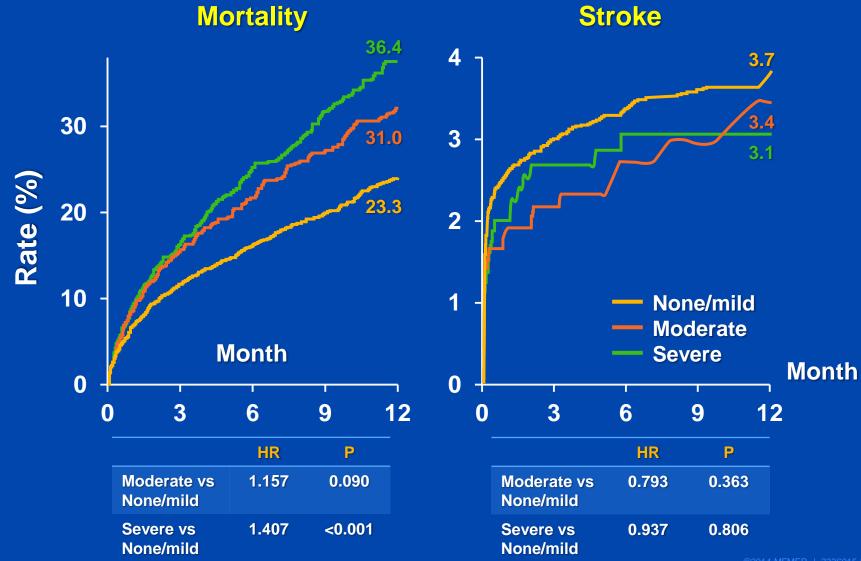
David R. Holmes, Jr., J. Matthew Brennan, John S. Rumsfeld, David Dai, Fred Edwards, John Carroll, David Shahian, Fred Grover, E. Murat Tuzcu, Eric Peterson, Ralph Brindis, Michael J. Mack

> March 2014 On behalf of the TVT Registry ACC 2014 Washington, D.C.

Background

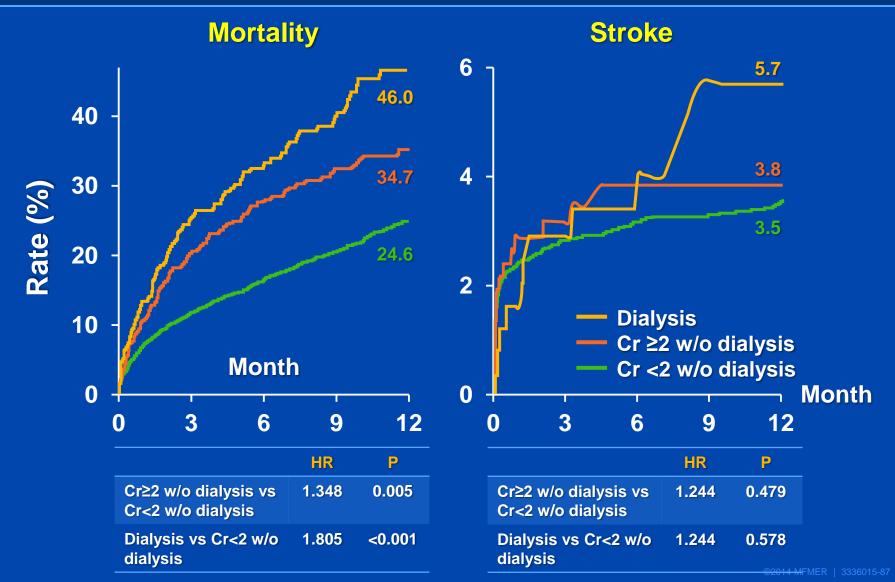
- TAVR is being used with increasing frequency
- Prior TVT Registry data on a subset of patients reported in-hospital and 30-day outcomes in U.S. clinical practice (Mack, et al JAMA 2013)
- Although longer-term outcomes have been reported in clinical trials, such outcomes in routine clinical practice in the U.S. are unknown
- The National STS/ACC TVT Registry was developed to capture the denominator of all U.S. patients undergoing TAVR

Primary Outcomes

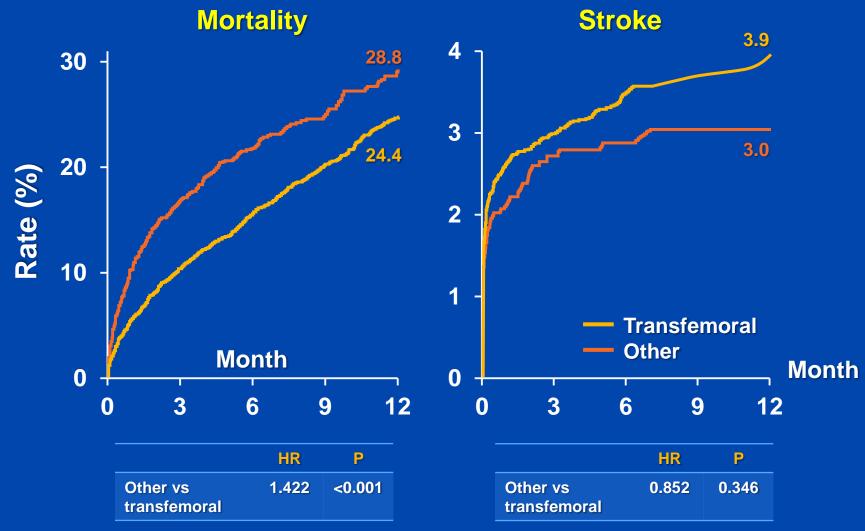

- This late breaking clinical trial presents the first TAVR data in the National TVT Registry linking initial outcome and 1-year Administrative Claims Center for Medicare Statistics (CMS). Patients undergoing TAVR for native aortic stenosis with an approved device were evaluated.
- Primary outcomes:
 - All cause mortality
 - Composite
 - Mortality and days alive outside of hospital
 - Stroke

Characteristic	Study Cohort N = 5,980
Prev. Stroke, n (%)	764 <mark>(12.8)</mark>
Peripheral Arterial Disease, n (%)	1,856 <mark>(31.1)</mark>
COPD Severe, n (%)	801 <mark>(13.5)</mark>
Oxygen-dependent lung disease, n (%)	895 <mark>(15.2)</mark>
Dialysis dependent	249 <mark>(4.2)</mark>
Serum creatinine <2.0	5,286 <mark>(88.8)</mark>
5mm walk time >6 sec	1,796 <mark>(30.4)</mark>
LV EF	
<30%, n (%)	414 (7.2)
>45%	4,276 <mark>(74.0)</mark>
Pre-TAVR Moderate MR, n (%)	1,594 <mark>(31.2)</mark>

MAYO CLINIC


Cumulative Incidence of Death and Stroke Affect of COPD

MAYO CLINIC


©2014 MFMER | 3336015-86

Cumulative Incidence of Death and Stroke Affect of Renal Function

MAYO CLINIC

Cumulative Incidence of Death and Stroke Affect of Access Site

TAVR 1 Year Outcomes

	Centers N	Patients N	Death %	Stroke %	Author
TVT/CMS	230	5,980	26.2	3.6	TVT
PARTNER B	21	179	30.7	11.2	Leon
PARTNER A	25	348	24.3	8.7	Smith
UK TAVI	25	870	21.4	NR	Moat
Canadian TAVI	6	339	24.0	NR	Rodes-Cabau
France 2	33	3,195	24.0	4.1	Gilard
Belgium	15	328	26.0	NR	Bosmans
Pragmatic	4	793	14.3	NR	Chieffo
SOURCE Reg	93	2,706	21.1	7.1	Treede

Characteristic	Overall Medicare Linked N= 7,825	Study Cohort N= 5,980	Excluded but Medicare linked N= 1,845	P
Age – yr Median (25 th , 75 th)	84 (79,88)	85 (79, 88)	84 (78, 88)	<0.001
75-84, n (%)	2,991 (38.2)	2,244 <mark>(37.5)</mark>	747 <mark>(40.5)</mark>	<0.001
85-94, n (%)	3,664 (46.8)	2,869 <mark>(48.0)</mark>	795 <mark>(43.1)</mark>	<0.001
Female, n (%)	3,912 (50.1)	3,006 (50.4)	906 <mark>(49.2)</mark>	0.365

Characteristic	Overall Medicare Linked N = 7,825	Study Cohort N = 5,980	Excluded but Medicare linked N = 1,845	P
STS PROM Score (25 th , 75 th)	7.1 (4.7, 10.8)	7.1 (4.7, 10.9)	6.9 (4.6, 10.5)	0.05
<8% n, (%)	4,501 (57.5)	3,405 <mark>(57.0)</mark>	1,096 <mark>(59.4)</mark>	
8-15%	2,401 (30.7)	1,844 <mark>(30.8)</mark>	557 <mark>(30.2)</mark>	
>15%	921 (11.8)	729 <mark>(12.2)</mark>	192 <mark>(10.4)</mark>	
NYHA Class III/IV Heart Failure, n (%)	6,385 (83.7)	4,876 <mark>(83.6)</mark>	1,509 <mark>(84.2)</mark>	
CAD, n (%)	4,719 (62.4)	3,564 <mark>(61.7)</mark>	1,155 <mark>(64.5)</mark>	0.039

Characteristic	Overall Medicare Linked N = 7,825	Study Cohort N = 5,980	Excluded but Medicare linked N = 1,845	Р
Prev. Stroke, n (%)	986 <mark>(12.6)</mark>	764 <mark>(12.8)</mark>	222 <mark>(12.6)</mark>	0.395
Peripheral Arterial Disease, n (%)	2,462 <mark>(31.5)</mark>	1,856 <mark>(31.1)</mark>	606 <mark>(32.9)</mark>	0.135
COPD, n (%)				
Severe	1,046 <mark>(13.5)</mark>	801 <mark>(13.5)</mark>	245 <mark>(13.4)</mark>	
Oxygen-dependent lung disease, n (%)	1,132 <mark>(14.7)</mark>	895 <mark>(15.2)</mark>	237 <mark>(13.0)</mark>	0.02

Characteristic	Overall Medicare Linked N = 7,825	Study Cohort N = 5,980	Excluded but Medicare linked N = 1,845	P
Dialysis dependent	311 <mark>(4.0)</mark>	249 <mark>(4.2)</mark>	62 <mark>(3.4)</mark>	
Serum creatinine <2.0	6,941 <mark>(89.1)</mark>	5,286 <mark>(88.8)</mark>	1,655 <mark>(90.0)</mark>	0.128
5mm walk time >6 sec	2,437 <mark>(31.5</mark>)	1,796 <mark>(30.4)</mark>	641 <mark>(35.0)</mark>	<0.001
LV EF				
<30%, n (%)	545 <mark>(7.2)</mark>	414 <mark>(7.2)</mark>	131 <mark>(7.4)</mark>	
>45%	5,543 <mark>(73.3)</mark>	4,276 (74.0)	1,267 <mark>(71.2)</mark>	0.032

Characteristic	Overall Medicare Linked N = 7,825	Study Cohort N = 5,980	Excluded but Medicare linked N = 1,845	P
Pre-TAVR mitral insufficiency, n (%)				
Moderate	2,098 <mark>(31.5)</mark>	1,594 <mark>(31.2)</mark>	504 <mark>(32.1)</mark>	0.610
Access site				
Transfemoral	4,866 <mark>(62.9)</mark>	3,770 <mark>(63.7)</mark>	1,096 <mark>(60.3)</mark>	800.0
Other	2,868 <mark>(37.1)</mark>	2,146 <mark>(36.3)</mark>	722 <mark>(39.7)</mark>	

In-Hospital Outcome

Characteristic	Study Cohort N = 5,980	P
In-hospital death	319 (5.3)	0.680
Any in-hospital stroke	99 (1.7)	0.817
Any in-hospital TIA	22 (0.4)	0.324
Any in-hospital valve complication	125 (2.1)	0.951
Conversion to open heart surgery	83 (1.4)	0.561
Discharge location		
Home	3,455 (61.1)	0.002
Extended care/TCU/rehab	1,788 (31.6)	0.002
Other acute care hospital	34 (0.6)	0.002
Nursing home	328 (5.8)	0.002
Hospice	31 (0.5)	0.002
Other	22 (0.4)	0.002

MAYO CLINIC

D2012 MFMER | slide-96

	Mortality		Stro	oke
	HR	P	HR	P
75-84 vs <75	1.224	0.060	0.999	0.998
85-94 vs <75	1.359	0.006	1.160	0.613
95+ vs <75	1.648	0.016	0.289	0.247

	HR	Р
75-84 vs <75	0.999	0.998
85-94 vs <75	1.160	0.613
95+ vs <75	0.289	0.247

	HR	P
75-84 vs <75	1.224	0.060
85-94 vs <75	1.359	0.006
95+ vs <75	1.648	0.016

CoreValve US Pivotal Trial

A Randomized Comparison of Self-expanding Transcatheter and Surgical Aortic Valve Replacement in Patients with Severe Aortic Stenosis Deemed High-Risk for Surgery

> David H. Adams, MD On Behalf of the US CoreValve Investigators

Presenter Disclosure Information

David H. Adams, MD

I receive royalties through the Icahn School of Medicine at Mount Sinai related to intellectual property for mitral and tricuspid valve repair products now owned by Edwards Lifesciences and Medtronic

Background

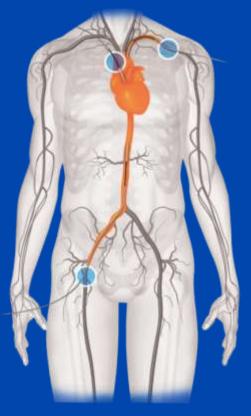
Many Patients with Symptomatic Severe Aortic Stenosis are not Ideal Candidates for Surgery due to Increased Risks

- TAVR with a balloon expandable valve improved survival compared to medical therapy in inoperable patients
- TAVR with a balloon expandable valve had similar survival compared to surgery in patients at high risk for surgery

Leon MB, Smith CR, Mack M, et al: N Engl J Med 2010;363:1597–1607; Smith CR, Leon MB, Mack M, et al. N Engl J Med 2011;364: 2187–2198

Study Purpose

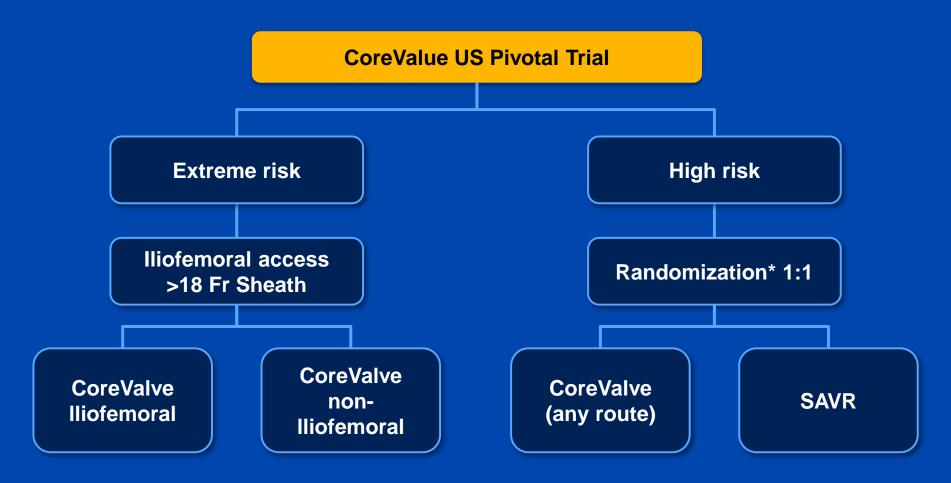
To assess the safety and effectiveness of TAVR with the CoreValve prosthesis compared to surgical valve replacement in symptomatic patients with severe aortic stenosis at increased surgical risk



Adams DH, Popma JJ, Reardon MJ, et al: New Engl J Med 2014; in press

Study Device and Access Routes

4 valve sizes (18-29 mm annular range)


18Fr delivery system

Transfemoral subclavian direct aortic

Pivotal Trial Design

*Randomization stratified by intended access site

Study Administration

Co-Principal Investigators

J. Popma, BIDMC, Boston D. Adams, Mount Sinai, New York

Steering Committee

CS's: M. Reardon, G.M. Deeb, J. Coselli, D. Adams, T. Gleason IC's: J. Hermiller, S. Yakubov, M. Buchbinder, J. Popma Consultants: B. Carabello, P. Serruys

Screening Committee

Chair: M. Reardon, D. Adams, J. Conte, G.M. Deeb, T. Gleason, J. Popma, S. Yakubov

ECG Core Laboratory Chair: P. Zimetbaum, HCRI

Echo Core Laboratory Chair: J. Oh, Mayo Clinic

Clinical Events Committee Chair: D. Cutlip, HCRI

Data & Safety Monitoring Board Chair: D. Faxon, Brigham and Women's Hospital

Quality of Life and Cost-Effective Assessments

Chair: D. Cohen, Mid-America Heart Institute M. Reynolds, HCRI

Pathology Core Laboratory Chair: R. Virmani, CV Path

Rotational X-ray Core Laboratory Chair: P. Genereux, CRF

Sponsor Medtronic, Inc.

Primary Endpoint

Primary Endpoint: All-cause mortality at 1 year

- Non-inferiority Testing: TAVR with the CoreValve prosthesis was non-inferior to SAVR for 1 year all-cause mortality with a 7.5% non-inferiority margin
- Superiority Testing: If the primary endpoint was met at the one-sided 0.05 level, a subsequent test for superiority was performed at the one-sided 0.05 level

Secondary Endpoints

- Hierarchical Testing of Secondary Endpoints
- △ mean gradient baseline to 1 year (non-inferior)
- ▲ effective orifice area baseline to 1 year (non-inferior)
- A NYHA class baseline to 1 year (non-inferior)
- △ KCCQ baseline to 1 year (non-inferior)
- Difference in MACCE* rate at hospital discharge or 30 days, whichever is later (superiority)
- ▲ SF-12 baseline to 30 days (inequality)

*Major adverse cardiovascular and cerebrovascular events, defined as a composite of all-cause mortality, myocardial infarction, all stroke, or aortic-valve reintervention

Sample Size Determination

- Hypothesis: TAVR with the CoreValve prosthesis is non-inferior (7.5% margin) to SAVR in 1 year all-cause mortality
 - H₀: ^π_{MCS TAVR} ≥^π_{SAVR} + 7.5%
 - H_{A} : $\pi_{MCS TAVR} < \pi_{SAVR} + 7.5\%$
- Sample Size Determination:
 - 1:1 treatment allocation
 - One-sided alpha = 0.05
- Power ≥80%

 $\pi_{SAVR} = 20\%$ $\pi_{MCS TAVR} = 20\%$ 10% attrition rate

 Study Size: 790 patients for a minimum of 355 patients in each arm

Participating Sites

795 Patients Enrolled at 45 Participating Sites

Clinical Sites ≥20 High Risk Enrollments

Methodist DeBakey Heart & Vascular Houston, TX N. Kleiman, M. Reardon	42	Kaiser Permanente – Los Angeles Los Angeles, CA V. Aharonian, T. Pfeffer	27
University of Michigan Health Systems Ann Arbor, MI S. Chetcuti, G.M. Deeb	39	The Johns Hopkins Hospital Baltimore, MD J. Conte, J. Resar	26
<mark>Spectrum Health Hospitals</mark> Grand Rapids, MI J. Heiser, W. Merhi	38	Saint Luke's Episcopal Hospital Houston, TX J. Coselli, J. Diez	25
<mark>University of Kansas Hospital</mark> Kansas City, KS P. Tadros, G. Zorn	35	Aurora St. Luke's Medical Center Milwaukee, WI T. Bajwa, D. O'Hair	24
<mark>St. Francis Hospital</mark> Roslyn, NY G. Petrossian, N. Robinson	32	St. Vincent Heart Center of Indiana Indianapolis, IN D. Heimansohn, J. Hermiller	23
Duke University Medical Center Durham, NC K. Harrison, C. Hughes	30	Mercy Medical Center Des Moines, IA A. Chawla, D. Hockmuth	22
<mark>Harrisburg Hospital</mark> Wormleysburg, PA B. Maini, M. Mumtaz	28	Banner Good Samaritan Phoenix, AZ T. Byrne, M. Caskey	22
University of Pittsburgh Pittsburgh, PA T. Gleason, J. Lee	28	Riverside Methodist Hospital Columbus, OH D. Watson, S. Yakubov	20

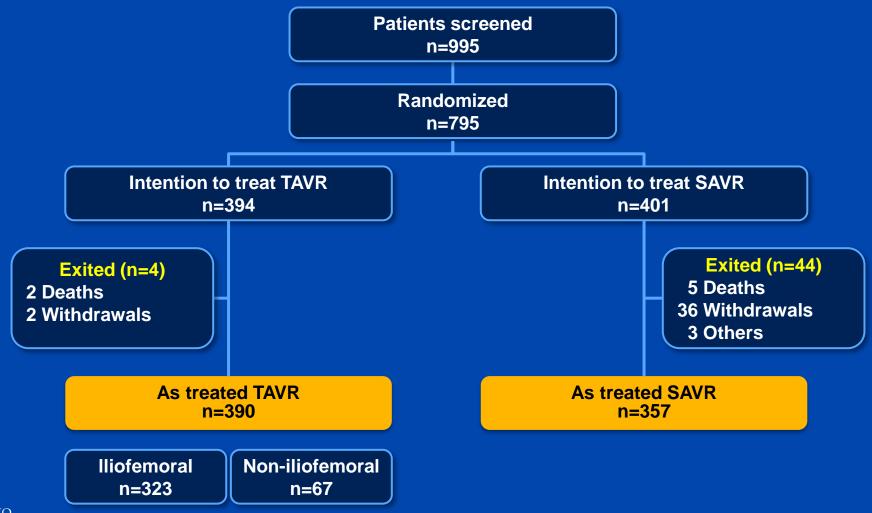
Inclusion Criteria

- Risk of death at 30 days after surgery was ≥15% and the risk of death or irreversible complications within 30 days was <50%
- Surgical risk assessment included consideration of STS Predicted Risk of Mortality estimate and other risk factors not captured in the STS risk model

Exclusion Criteria

Clinical and Anatomic Exclusion Criteria Included:

- Recent active GI bleed (<3 mos), stroke (<6 mos), or MI (≤30 days)
- Any interventional procedure with bare metal stents (<30 days) and drug eluting stents (<6 months)
- Creatinine clearance <20 mL/min
- Significant untreated coronary artery disease
- LVEF < 20%
- Life expectancy <1 year due to co-morbidities



National Screening Committee

- Chairman: Michael J. Reardon, M.D.
- Two clinical site cardiac surgeons and one interventional cardiologist determined patient eligibility
- All patients were reviewed on web-based conference calls with site investigators to confirm eligibility and access route
- Detailed portfolio included
 - STS PROM and all other risk factors
 - Independent review of transthoracic echocardiogram
 - Independent review of chest/abdominal CTA findings
- Two senior surgeons and one cardiologist on the screening committee had to concur with the local heart team assessment to qualify the patient for trial enrollment

Study Disposition

Primary Analysis Cohort

As Treated

All randomized patients with an attempted implant procedure, defined as when the patient is brought into the procedure room and any of the following have occurred: anesthesia administered, vascular line placed, TEE placed or any monitoring line placed

Study Compliance

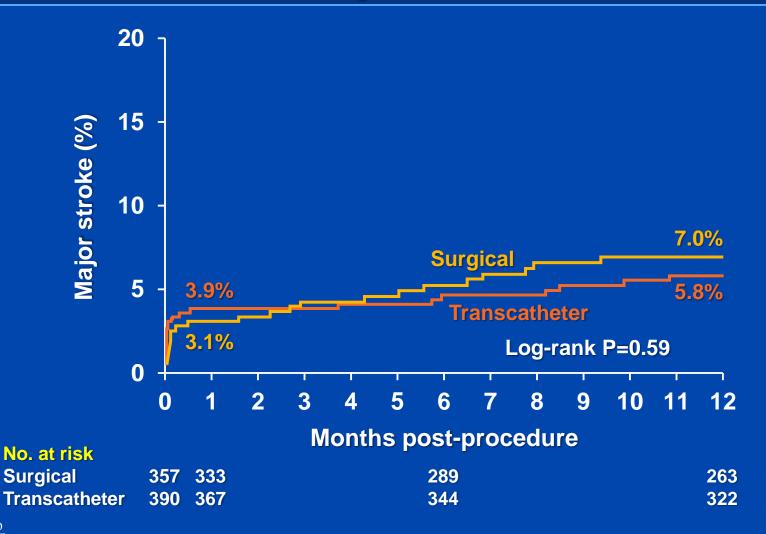
Baseline Demographics

Characteristic (%)	TAVR n=390	SAVR N=357
Age, years	83.1±7.1	83.2±6.4
Men	53.1	52.4
STS predicted risk of mortality	7.3±3.0	7.5±3.4
Logistic EuroSCORE	17.7±13.1	18.6±13.0
NYHA class III/IV	85.6	86.8
Diabetes mellitus	34.9*	45.4*
Insulin requiring diabetes	11.0	13.2
Prior stroke	12.6	14.0
Modified Rankin 0 or 1	74.5	87.2
Modified Rankin >1.1	25.5	12.8
STS severe chronic lung disease	13.3	9.0
*P<0.01		

Non-STS Co-Morbidity, Frailty, Disability

Accorrect (9/)	TAVR n=390	SAVR n=357
Assessment (%)	12.9	11.5
Home oxygen		
Liver cirrhosis	2.6	2.0
Anemia with prior transfusion	18.2	15.9
Immunosuppressive therapy	10.5	8.5
Severe (>5) Charlson Co-Morbidity*	54.1	57.9
Falls in past 6 months	18.5	18.2
5 meter gait speed >6 secs	79.3	80.4
Assisted living	9.7	10.9
Katz ≥1 ADLs deficits	10.5	12.3

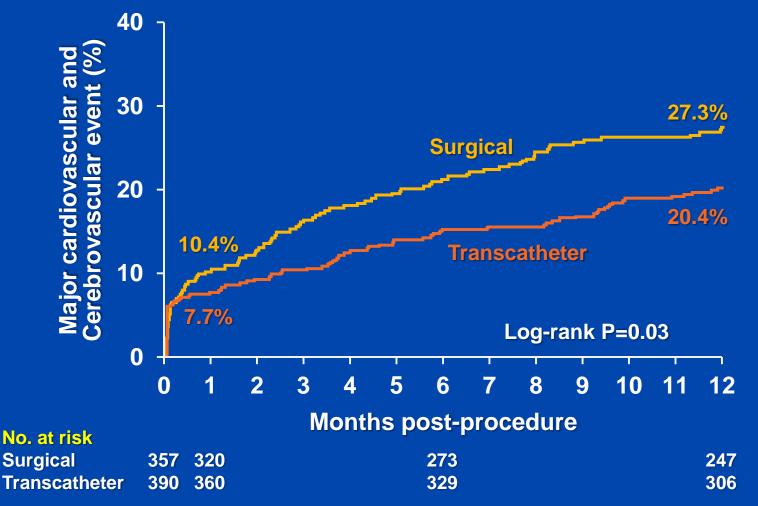
*Charlson score: = 1 MI, CHF, PVD, CVD, dementia, chronic lung disease, connective tissue disease, ulcer, mild liver disease, DM; = 2 hemiplegia, mod-severe kidney disease, diabetes with end organ damage, leukemia, lymphoma; = 3 moderate or severe liver disease; = 6 metastatic solid tumor, AIDS



CoreValve US Pivotal Trial High Risk Results

©2014 MFMER | 3339277-118

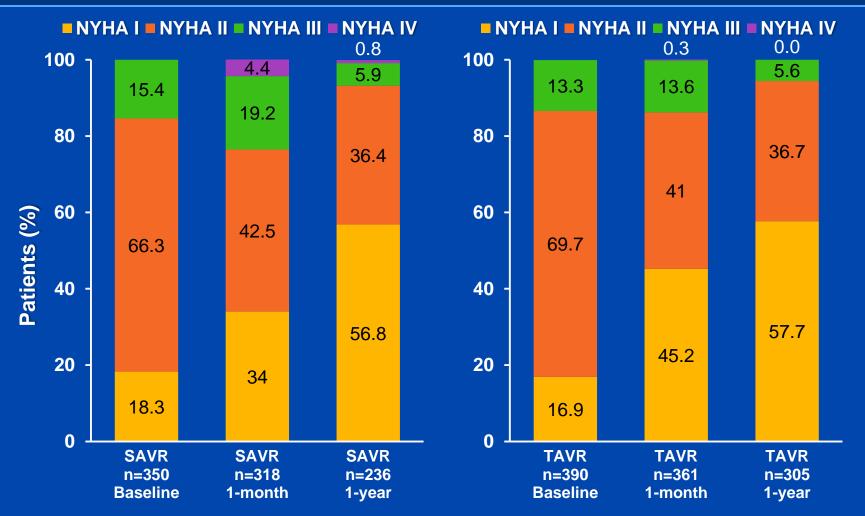
Major Stroke


Secondary Endpoints

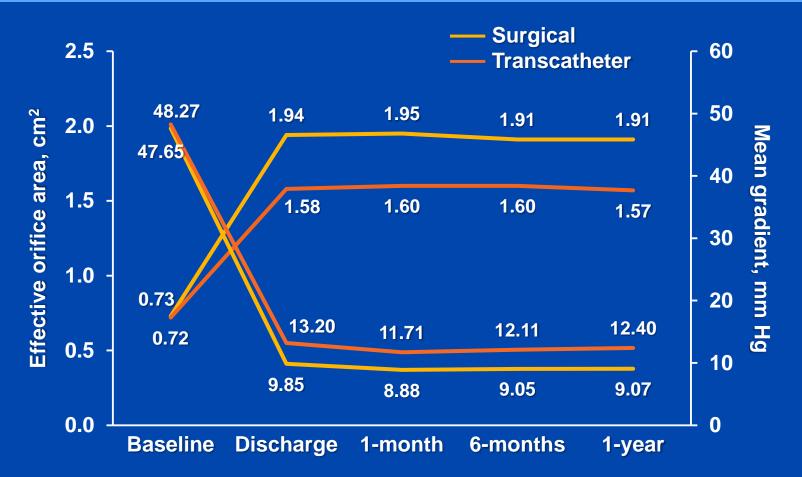
Hierarchical Testing of Secondary Endpoints

- ∆ mean gradient baseline to 1 year (non-inferior; P<0.001)
- ▲ effective orifice area baseline to 1 year (non-inferior; P<0.001)
- \triangle NYHA class baseline to 1 year (non-inferior; P<0.001)
- ▲ KCCQ baseline to 1 year (non-inferior; P=0.006)
- Difference in MACCE rate at hospital discharge or 30 days, whichever is later (superiority; P=0.103)
- ▲ SF-12 baseline to 30 days (inequality; nominal P<0.001)

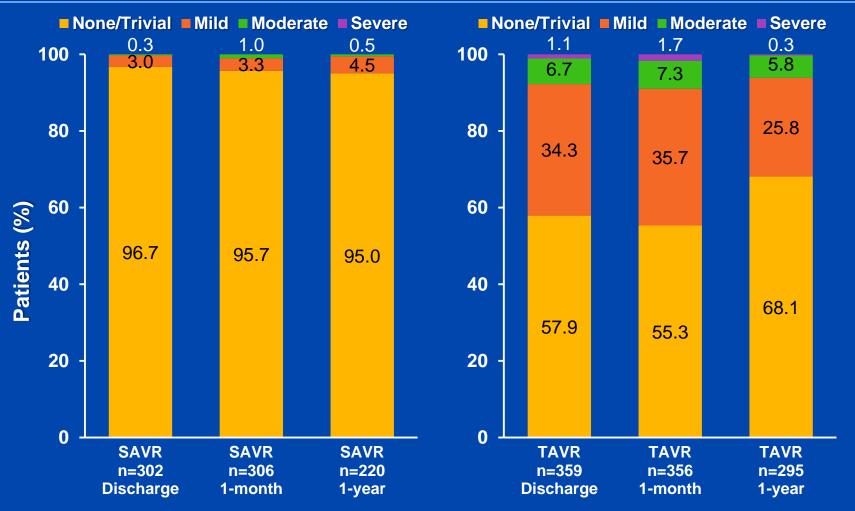
1-Year MACCE


Other Endpoints

		1-month			1-Year	
Events* (%)	TAVR	SAVR	P	TAVR	SAVR	P
Vascular complications (major)	5.9	1.7	0.003	6.2	2.0	0.004
Pacemaker implant	19.8	7.1	<0.001	22.3	11.3	<0.001
Bleeding (life threatening or disabling)	13.6	35.0	<0.001	16.6	38.4	<0.001
New onset or worsening atrial fibrillation	11.7	30.5	<0.001	15.9	32.7	<0.001
Acute kidney injury	6.0	15.1	<0.001	6.0	15.1	<0.001


*Percentages reported are Kaplan-Meier estimates and log-rank P values

NYHA Class Survivors


Echocardiographic Findings

Post implant, there were significant differences (P<0.001) between TAVR and SAVR at each time point for both EOA and mean gradient

Paravalvular Regurgitation

There was significantly lower PVL with SAVR over TAVR at each time point (P<0.001)

Subgroup Analysis for 1-Year Mortality

All-cause death at

	All-cause 1-year K-				
Subgroup	TAVR	SAVR		Hazard ratios (95% Cl)	Р
Age					0.97
>85	15.7	21.4	0.71 (0.43, 1.16)	- <mark></mark> -	
≤85	12.9	17.2	0.72 (0.43, 1.20)	<mark></mark>	
Gender					0.21
Male	15.5	16.7	0.89 (0.55, 1.47)	<u>_</u>	_
Female	12.7	21.8	0.56 (0.33, 0.95)		
ВМІ					0.79
≤30	15.7	20.6	0.73 (0.48, 1.09)	- <mark></mark>	
<30	10.3	15.8	0.64 (0.30, 1.38)	<mark>_</mark>	
LVEF					0.68
≤60	15.8	19.9	0.76 (0.49, 1.16)		
<60	11.6	17.8	0.64 (0.34, 1.22)	_	
Diabetes					0.86
Νο	15.8	22.3	0.67 (0.44, 1.03)		
Yes	11.3	15.3	0.72 (0.38, 1.37)	_	
			0.125	5 0.25 0.50 1.00	2.00

Favors TAVR

Favors SAVR

Subgroup Analysis for 1-Year Mortality

All-cause death at 1-year K-M rates

				Hazard ratios	
Subgroup	TAVR	SAVR		(95% CI)	Р
Prior					0.27
No	16.2	19.6	0.80 (0.53, 1.21)	<mark></mark>	
Yes	9.6	18.1	0.50 (0.24, 1.04)	<u>_</u>	
PVD					0.95
No	12.8	17.8	0.68 (0.42, 1.11)		
Yes	15.3	21.2	0.70 (0.41, 1.19)	<mark></mark>	
Hypertension					0.35
No	15.8	36.5	0.37 (0.09, 1.54) -		
Yes	14.1	18.4	0.74 (0.51, 1.07)	- <u></u>	
STS Score					>0.99
≤ 7%	10.5	14.2	0.72 (0.40, 1.29)		_
>7%	18.2	24.1	0.72 (0.46, 1.13)		
			0.12		
			Favors T	FAVR F	avors SAVR

Limitations

- More patients refused surgical replacement after randomization assignment than refused transcatheter replacement (there were no important differences between treated and withdrawn patients)
- Patients had a lower 30-day mortality rate than was specified in our study inclusion criteria, and therefore the trial population may have been at lower risk than was intended

Thank You On Behalf of the U.S. CoreValve Investigators

©2014 MFMER | 3339277-129

Questions & Discussion

Background

- Transcatheter aortic valve replacement is an effective treatment option for high-risk patients with severe aortic stenosis
- Different from surgery, TAVR requires either a balloon-expandable of self-expandable system
- 2 device types are in widespread use
 - Balloon-expandable Edwards SAPIEN valve (Edwards Lifesciences)
 - Self-expandable Medtronic CoreValve (Medtronic Inc.)

Background

- Some observational registries have reported a lower frequency of post-procedural paravalvular aortic regurgitation with the balloon-expandable device*
- However, recent improvements in pre-procedural imaging and device size selection, refinements in implantation technique, and the recognition of paravalvular leaks as a relevant clinical complication, might affect the functional outcome of both valves
- A randomized comparison of both device is lacking

*Moat et al: JACC, 2011; Gilard et al: NEJM, 2012; Nombela-Franco et al: AJC, 2013; Abdel-Wahab et al: JACC Cardiovasc Interv, 2014

Purpose of CHOICE

To compare the performance of balloon expandable and self-expandable transcatheter aortic valves regarding overall device success in a randomized clinical trial for patients with symptomatic severe aortic stenosis at high-risk for surgery

Inclusion and Exclusion Criteria

Main inclusion criteria

- Severe symptomatic aortic stenosis (aortic valve area ≤1 cm² or 0.6 cm²/m²)
- High risk for surgery (age >75 years and/or Logistic EuroSCORE ≥2% and/or STS risk score ≥10% and/or contraindication to conventional surgical replacement)
- Native aortic valve annulus measuring 20-27 mm
- Suitable transfemoral vascular access
- Main exclusion criteria
 - Native aortic valve annulus <20 mm and >27 mm
 - Pre-existing aortic bioprosthesis
 - Cardiogenic shock or hemodynamic instability

^{*}Moat et al: JACC, 2011; Gilard et al: NEJM, 2012; Nombela-Franco et al: AJC, 2013; Abdel-Wahab et al: JACC Cardiovasc Interv, 2014

Primary Endpoint

- 'Device success' (first VARC definition), which is a 'technical' composite endpoint including
 - Successful vascular access, delivery and deployment of the device and retrieval of the delivery system
 - Correct position of the device in the proper anatomical location
 - Intended performance of the prosthetic heart valve(aortic valve area >1.2 cm² and mean aortic valve gradient <20 mm Hg or peak velocity <3 m/s, without moderate or severe prosthetic valve AR)
 - Only one valve implanted in the proper anatomical location
- Power calculation
 - The assumed incidence of device success was 70% with the selfexpandable valve and 85% with the balloon-expandable valve^{*}
 - Power of 80%, alpha level of 0.05
 - The calculated sample size was a total of 240 patients, 120 patients per group

^{*}Moat et al: JACC, 2011; Gilard et al: NEJM, 2012; Nombela-Franco et al: AJC, 2013; Abdel-Wahab et al: JACC Cardiovasc Interv, 2014

30-Day Secondary Endpoints*

- Cardiovascular mortality
- Major and minor vascular complications
- Major and minor bleeding
- Post-procedural pacemaker implantation
- NYHA class improvement (by at least 1 functional class)
- Combined safety endpoint
 - A composite of all cause mortality, major stroke, life threatening or disabling bleeding, acute kidney injury stage 3 including renal replacement therapy, peri-procedural myocardial infarction, major vascular complications and repeat procedure for valve-related dysfunction)
- Major adverse cardiovascular and cerebrovascular events
 - A composite of myocardial infarction, cardiac or vascular surgery and stroke

*Endpoints defined according to VARC 1 Further follow-up is planned at 6 months, 1 year, 2 and 5 years

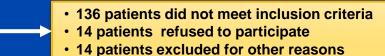
Study Methodology

- Device size selection was based on manufacture's sizing charts, but the steering committee strongly recommended sizing to be based on 3-D imaging
 - MDCT-based annular are for the balloon-expandable valve
 - MDCT-based annular perimeter for the selfexpandable valve
- All procedure were performed by experienced operators in centers with an established multidisciplinary TAVR program
- The procedure was mainly performed under analgo-sedation using fluoroscopic guidance (TEE only in selected cases)


Assessment of Aortic Regurgitation

Assessment of AR after implantation was performing using

- 1. Angiography (standardization acquisition, core-lab adjudicated)
- 2. Transthoracic echocardiography (VARC 1 criteria)
- 3. Invasive hemodynamic measurements (AR Index)
- Assessment of valve function at follow-up was performed using
 - 1. Transthoracic echocardiography (48 hours, 30 days, and will be further assessed at intermediate and long-term follow-up)
 - 2. Cardiac MRI in a subgroup of patients (7-14 days and 6 months after TAVR)
- Assessment of post-procedural AR as a criterion of the primary endpoint was performed using core-lab angiography


Study Sites and Organization

CLINIC

Study Flow

405 patients undergoing TAVR assess for eligibility

241 patients enrolled and randomized (March 2012-December 2013)

121 patients assigned to and received transfemoral TAVR with a balloon-expandable device (Edwards Sapien XT)

121 patients assessed for the primary endpoint with complete in-hospital follow-up 120 patients assigned to and received transfemoral TAVR with a self-expandable device (Medtronic CoreValue)

120 patients assessed for the primary endpoint with complete in-hospital follow-up

2 patients withdrew consent
1 patient lost at follow-up

121 patients assessed for secondary endpoints at 30 days 117 patients assessed for secondary endpoint at 30 days

Baseline Characteristics Demographics

	Balloon-expandable (n=121)	Self-expandable (n=120)	Р
Age (years)	81.9±6.7	79.6±15.8	0.14
Females	69/121 (57%)	86/120 (71.7%)	0.02
BMI (kg/m²)	26.4±4.2	26.6±5.2	0.77
Logistic EuroSCORE	21.5±12.9	22.1±14.7	0.72
EuroSCORE II	6.4±6.7	6.2±5.8	0.76
STS score	5.6±2.9	6.2±3.9	0.17
NYHA class III or IV	97/121 (80.2%)	98/120 (81.7%)	0.76

Baseline Patient Characteristics Comorbidities

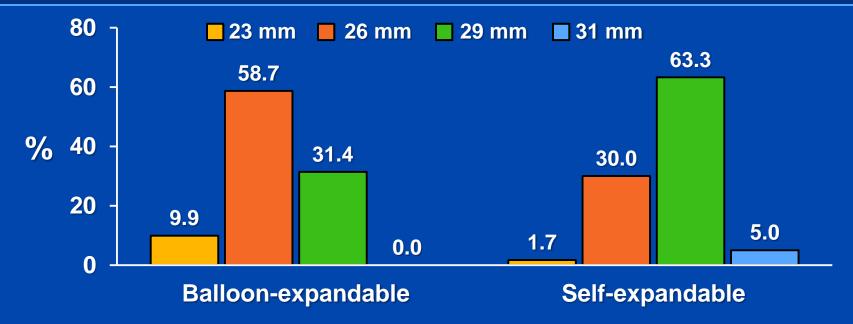
	Balloon-expandable (n=121)	Self-expandable (n=120)	Р
Diabetes mellitus	38/121 (31.4%)	32/120 (26.7%)	0.42
CAD	73/121 (60.3%)	79/120 (65.8%)	0.38
Previous CABG	19/121 (15.7%)	15/120 (12.5%)	0.48
Previous PCI	44/121 (36.4%)	51/120 (18.3%)	0.33
Peripheral vascular disease	20/121 (16.5%)	22/120 (18.3%)	0.88
Pulmonary disease	27/121 (22.3%)	24/120 (20.0%)	0.66
Creatinine level (mg/dL)	1.1±0.4	1.2±0.5	0.18
Atrial fibrillation	39/117 (33.3%)	29/117 (24.8%)	0.15
Permanent pacemaker	7/117 (5.9%)	9/117 (7.7%)	0.60

Baseline Transesophageal Echocardiography

	Balloon-expandable (n=120)	Self-expandable (n=116)	Р
AVA (cm²)	0.7±0.2	0.7±0.2	0.71
Indexed AVA (cm²/m²)	0.4±0.1	0.4±0.1	0.34
Mean gradient (mm Hg)	43.3±15.4	43.0±13.9	0.90
LVEF (%)	52.5±13.8	54.9±11.9	0.15
LVEF ≤35%	18/120 (15.0%)	11/115 (9.6%)	0.21
Moderate or severe AR	17/118 (14.4%)	24/115 (20.9%)	0.19
Moderate or severe MR	44/119 (36.9%)	38/116 (32.7%)	0.49
sPAP (mm Hg)	37.3±13.1	39.2±13.6	0.34

Baseline Transthoracic Echocardiography

	Balloon-expandable (n=120)	Self-expandable (n=116)	Р
Annulus diameter (mm)	23.3±2.2	23.1±1.9	0.46
Leaflet calcification			0.60
Moderate	31/106 (29.2%)	33/101 (32.7%)	
Severe	75/106 (70.8%)	68/101 (67.3%)	
Asymmetric calcification	26/94 (27.7%)	26/101 (25.7%)	0.76
Eccentric valve orifice	9/97 (9.3%)	12/100 (12.0%)	0.54
Bicuspid aortic valve	0/107 (0.0%)	0/102 (0.0%)	_

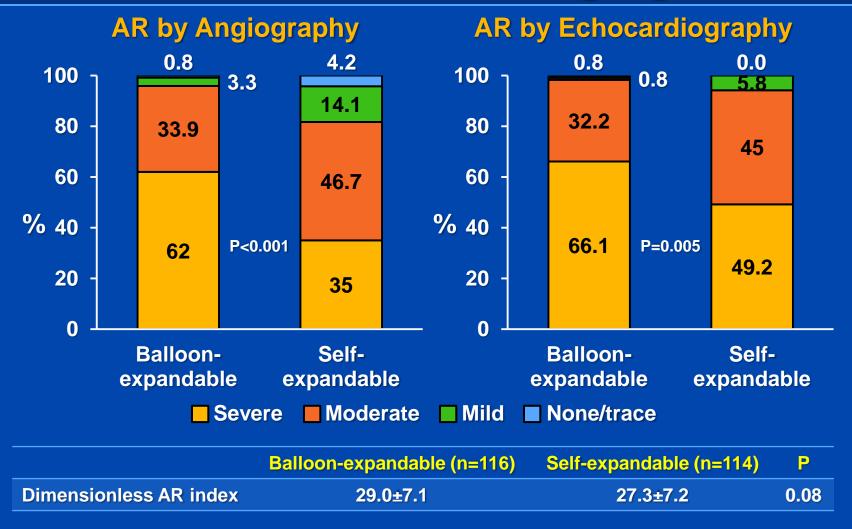


Baseline Multislice CT

	Balloon-expandable (n=97)	Self-expandable (n=94)	Р
Aortic annulus			
Mean diameter (mm)	24.1±1.7	23.6±2.0	0.09
Eccentricity index	0.17±0.06	0.18±0.07	0.75
Leaflet calcification			0.99
Mild	9/94 (9.6%)	20/93 (21.5%)	
Moderate	52/94 (55.3%)	33/93 (35.5%)	
Severe	33/94 (35.1%)	40/93 (43.0%)	
LVOT calcification			0.15
None	45/94 (47.9%)	56/93 (60.2%)	
Mild	21/94 (22.3%)	15/93 (16.1%)	
Moderate	23/94 (24.5%)	16/93 (17.2%)	
Severe	5/94 (5.3%)	6/93 (17.2%)	

Procedural Factors Valve Sizes

Percent oversizing	Balloon-expandable	Self-expandable	P
TEE diameter	12.8±5.4	17.7±5.9	<0.001
Mean MDCT diameter	9.6±5.6	15.8±4.5	<0.001
MDCT area	19.5±8.0	30.8±8.2	<0.001
MDCT perimeter	7.2±4.9	14.8±4.9	<0.001



Procedural Details

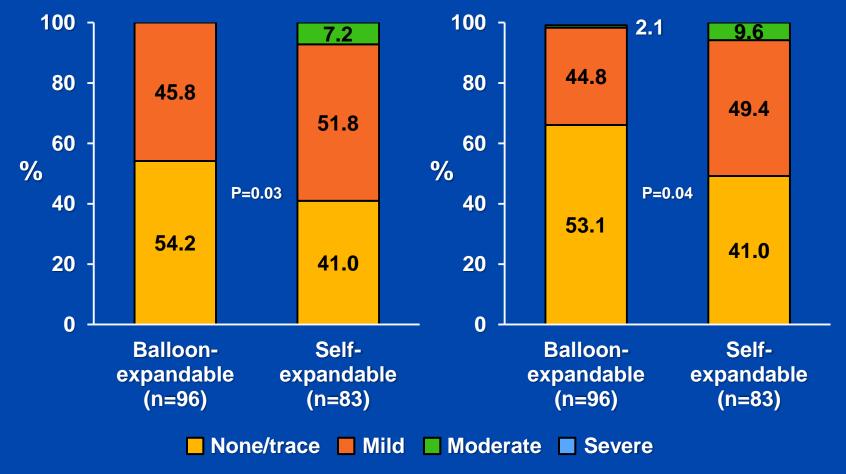
	Balloon-expandable (n=121)	Self-expandable (n=120)	Р
Balloon pre-dilation	121/121 (100%)	106/120 (88.3%)	<0.001
AR after initial implantation			<0.001
None/trace	72/121 (59.5%)	31/120 (25.8%)	
Mild	34/121 (28.1%)	38/120 (31.7%)	
Moderate	10/121 (8.3%)	33/120 (27.5%)	
Severe	5/121 (4.1%)	18/120 (15.0%)	
Maneuvers to improve AR			
Balloon post-dilation	24/121 (19.8%)	59/120 (49.2%)	<0.001
Valve snaring	0/121 (0.0%)	2/120 (1.7%)	0.24
Implantation of ≥2 valves	1/121 (0.8%)	7/120 (5.8%)	0.03
Coronary obstruction	2/121 (1.6%)	0/120 (0.0%)	0.49
Annular rupture	0/121 (0%)	0/120 (0.0%)	_
Left-to-right shunt	2/121 (1.6%)	2/120 (1.7%)	0.99
Depth of implantation (mm)	_	5.2±3.2	_
Procedural duration (min)	74.5±29.5	80.5±40.5	0.20
Contrast amount (mL)	208.6±71.4	223.1±98.2	0.19

Post-Procedural Aortic Regurgitation

Subgroup Analysis Relative Risk of Primary Endpoint

	Balloon-expandable (no. of events/total, %)	Self-expandable (no. of events/total, %)		Risk ratio (95% Cl)	Р
All patients	116/121 (95.9)	93/120 (77.5)	_ _ _	1.24 (1.12-1.37)	
Age					0.89
≥80 years	82/85 (96.5)	62/76 (81.6)	— <mark>—</mark> ——	1.18 (1.05-1.33)	
<80 years	34/36 (94.4)	31/44 (70.4)	_	1.34 (1.09-1.65)	
Gender					0.22
Male	50/52 (96.1)	21/34 (61.8)	<u>_</u>	1.56 (1.19-2.04)	
Female	66/69 (95.6)	72/86 (83.7)		1.14 (1.03-1.27)	
CAD					0.84
No	47/48 (97.9)	35/41 (85.4)		1.15 (1.00-1.31)	
Yes	69/73 (94.5)	58/79 (73.4)	— — —	1.29 (1.12-1.49)	
LVEF					0.95
>35%	97/101 (96.0)	80/100 (80.0)	— <mark>—</mark> —	1.20 (0.94-1.78)	
≤35%	18/19 (94.7)	11/15 (73.3)	<u>_</u>	1.29 (0.94-1.78)	
Mitral regurgitation					0.70
No/mild	72/75 (96.0)	63/78 (80.8)	— — —	1.19 (1.06-1.34)	
Moderate/severe	42/44 (95.5)	27/38 (71.1)		1.34 (1.09-1.66)	
CT annulus diameter					0.23
<25 mm	56/60 (93.3)	55/68 (80.9)	— <u> </u>	1.15 (1.01-1.32)	
≥25 mm	34/35 (97.1)	18/26 (69.2)	_	1.40 (1.08-1.82)	
Annular eccentricity					0.37
≤0.25	81/84 (96.4)	60/77 (77.9)	— <u>—</u> —	1.24 (1.09-1.40)	
>0.25	8/9 (88.9)	11/14 (78.6)		1.13 (0.79-1.62)	
Leaflet calcification					0.28
No/mild	8/9 (88.9)	17/20 (85.0)	<mark>0</mark>	1.04 (0.78-1.41)	
Moderate/severe	81/85 (95.3)	56/73 (76.7)		1.24 (1.09-1.42)	
LVOT calcification					0.15
No/mild	64/66 (97.0)	55/71 (77.5)	_	1.25 (1.10-1.43)	
Moderate/severe	25/28 (89.3)	18/22 (81.8)		1.09 (0.86-1.38)	

Echocardiographic Findings


Valve Area (cm²) Mean Gradient (mm Hg) 2.5 50 -O- Self-expandable 43.3 2.1 -O- Balloon-expandable 2.0 43.0 2.0 **40** 2.0 P=0.90 1.9 P=0.86 P=0.13 1.5 30 1.0 20 0.7 P<0.001 P<0.001 8.9 8.4 0.7 0.5 10 -O- Self-expandable P=0.71 **Balloon-expandable** -0-6.6 6.4 0.0 0 **Baseline Baseline Post-TAVR** 30-day **Post-TAVR** 30-day

Echocardiographic Findings Aortic Regurgitation at 30 Days

Paravalvular AR

Total AR

Cardiac MRI Subgroup

	Balloon-expandable (n=56)	Self-expandable (n=34)	P
LV ejection fraction (%)	55.6±12.8	56.5±9.8	0.72
Antegrade volume (mL)	70.8±15.0	70.1±17.1	0.84
Retrograde (mL)	2.9±2.9	4.5±6.0	0.21
Regurgitate fraction (%)	4.2±3.9	7.1±8.2	0.06
More-than-mild AR (RF ≥15%)	1/55 (1.8%)	6/33 (18.2%)	0.01

Study Limitations

- Assessment of AR as a criterion of the primary endpoint using core lab angiography and the lack of an echocardiographic core lab
- However, the following points need to be considered
 - Lack of validation of the VARC echocardiographic grading criteria
 - Possible underestimation of AR severity by echo*
 - Prognostic relevance of angiographic AR at least as strong as echocardiographic AR^{**}
 - The timing, angiographic views, and amount and flow-rate of contrast were standardized
 - The angiographic findings were confirmed by a wide range of assessment tools, including echo, hemodynamic measurements and cardiac MRI

	SURTAVI COREVALVE	Commercial COREVALVE	S3I SAPIEN 3	Commercial SAPIEN	SAPIEN XT	REPRISE II (LOTUS)	PORTICO- IDE	XL PERCEVAL
Date available	Soon	Soon	Now	Now	Soon	Future	Future	Now
Study design	Randomized TAVR vs SAVR	FDA Approved	Registry	FDA Approved	Awaiting FDA	Registry	Randomized PORTICO vs other TAVR	Registry
AVA or AVAI	≤1.0 cm² <0.6 cm²/m²	≤1.0 cm² <0.6 cm²/m²	≤0.8 cm² <0.5 cm²/m²	≤1.0 cm² <0.6 cm²/m²	<1.0 cm ² <0.6 cm ² /m ²	<1.0 cm ²	<1.0 cm ²	<1.0 cm ² <0.6 cm ² /m ²
Peak velocity or mean gradient	≥4 m/s ≥40 mm Hg	≥4 m/s ≥40 mm Hg	≥4 m/s ≥40 mm Hg	≥4 m/s ≥40 mm Hg	≥4 m/s ≥40 mm Hg	≥4 m/s ≥40 mm Hg	≥4 m/s ≥40 mm Hg	≥4 m/s ≥40 mm Hg
STS Risk	4-10%	≥8%	4-8%	≥8%	≥8%	≥8%	≥8%	<8%
TTE annulus dimensions	18-29 mm	18-29 mm	18-28 mm	19-24 mm	18-28 mm	19-27 mm	19-23 mm	19-27 mm
CT annulus area (mm²)	23: 254.5-314.2 26: 314.2-415.5 29: 415.5-572.6 31: 530.9-660.5	26: 314.2-415.5 29: 415.5-572.6	23: 338-430 26: 430-546 29: 540-680	23: 300-380 26: 415-490	23: 300-380 26: 415-490 29: 530-620			21: 23: 25:
CT perimeter (mm)	23: 56.5-62.8 26: 62.8-72.3 29: 72.3-81.7 31: 81.7-91.1	23: 56.5-62.8 26: 62.8-72.3 29: 72.3-81.7 31: 81.7-91.1	23: 26: 29:	23: 60-69 26: 72-78.5	23: 60-69 26: 72-78.5 29: 81.5-88			
Minimum iliofemoral diameter for TF (mm)	23-31: 6.0	23-31: 6.0	23: 5.5 26: 5.5 29: 6.0	23: 7.0 26: 8.0	23: 6.0 26: 6.5 29: 7.0			NA

Last updated 4/6/2014 MFE source: clinicaltrials.gov

Important Exclusion Criteria for SURTAVI

- True porcelain aorta
- Life expectancy <2 years
- Extensive mediastinal irradiation
- Child Class C Cirrhosis
- ESRD on HD or CrCl <20
- Severe Pulmonary Hypertension (PASP >80)
- Severe COPD with FEV1 <750 cc
- Any valve prosthesis, severe MR, MS or TR
- Vascular anatomy not able to accommodate 18F sheath

Frailty Exclusion Criteria for SURTAVI

Frailty assessments identify

- Subject is <80 years of age and 3 or more of the following apply
- Subject is ≥80 years of age and two or more of the following apply
 - Wheelchair bound
 - Resides in an institutional care facility (eg, nursing home, skilled care center)
 - Body Mass Index <20 kg/m²
 - Grip strength <16 kg
 - Katz Index score ≤4
 - Albumin <3.5 g/dL

